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In this paper, a new switching mechanism is proposed based on the state of dynamic tracking error so that more information
will be provided –not only the error but also a one up to pth differential error will be available as the switching variable.
The switching index is based on the Lyapunov stability theory. Thus the switching mechanism can work more effectively and
efficiently. A simplified quasi-ARX neural-network (QARXNN) model presented by a state-dependent parameter estimation
(SDPE) is used to derive the controller formulation to deal with its computational complexity. The switching works inside
the model by utilizing the linear and nonlinear parts of an SDPE. First, a QARXNN is used as an estimator to estimate an
SDPE. Second, by using SDPE, the state of dynamic tracking error is calculated to derive the switching index. Additionally,
the switching formula can use an SDPE as the switching variable more easily. Finally, numerical simulations reveal that
the proposed control gives satisfactory tracking and disturbance-rejection performances. Experimental results demonstrate its
effectiveness. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

If the dynamic model of a controlled system can be known
exactly, then the ideal control can be calculated to obtain the
desired reference trajectory. Generally, a linear system mixed with
noise or nonlinear system results in uncertainty of the parameters
of the system. It becomes difficult to solve these problems because
the ideal control is unobtainable. Hence, to resolve these problems,
a conventional linear and robust control has been adopted to
consider the robustness and performance accuracy. However, by
increasing the robustness, the control accuracy will be reduced.
To maintain the control accuracy, nonlinear models such as the
neural network (NN) and fuzzy models were used as identifiers
for the controller design because they are generally applicable
to systems with mathematically poor models [1,2]. An NN-
based adaptive control is performed using analysis theory such
as stability, robustness, and control accuracy. However, the major
disadvantage is the lack of a systematic design of the control
methodology [3,4].

To facilitate the controller design methodology, the technique
of using a feedback linearization of a nonlinear system was
proposed by using a nonlinear model [1,3,5–7]. In this paper,
a quasi-ARX neural-network (QARXNN) model is proposed as
an identifier. A QARXNN model is a nonlinear model that
describes the system modeling by a linear relationship between
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the nonlinear coefficients and the regression vector. An NN is
used to parameterize the regression vector, with the output being
state-dependent parameter estimation (SDPE). Thus, the control
law is derived directly by utilizing the transformation of its linear
inverse.

It is a key point to guarantee the stability and improve the
control accuracy for designing a control system. The use of a
nonlinear controller improves the control accuracy. However, it
is difficult to use only a nonlinear controller to guarantee the
stability of the closed-loop controller because of the uncertainty
of a nonlinear system [8,9]. To improve the tracking control
performance, Zhang et al. [8] proposed a switching mechanism
to guarantee the stability and to improve the control accuracy.
The switching and tuning framework has been established for the
adaptive control design with multiple models [8,9]. Two linear
and nonlinear models are used with a switching mechanism [8]:
(i) a linear controller-driven model with self-tuning parameters,
and (ii) an estimator based on an adaptive network-based fuzzy-
inference system (ANFIS) for unmodeled dynamics to design a
nonlinear controller. Two linear and nonlinear estimators work
under a switching mechanism, and the linear adaptive control is
always stable to ensure the boundedness of the input and output
of the closed-loop system, while the nonlinear controller improves
the control accuracy.

The switching index between the linear and nonlinear controller
was proposed by some researchers [2,8,10,11]. The switching rule
is based on the convergence index of error, which is a function of
the estimation error of the linear and nonlinear adaptive controllers.
It works by comparing the convergence index of the linear and
nonlinear parts, which activates the switching mechanism to switch
on the controller with the smallest minimum index. However,
with such a switching mechanism, it is difficult to obtain more
information from the error vector to determine the stability of
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the closed-loop control system. Therefore, such a switching rule is
not efficient, because unnecessary switching to the linear controller
will be longer and more frequent. Thus, the accuracy of the control
system becomes poor.

In this paper, a new switching mechanism is proposed based
on the state of dynamic tracking error so that more information
will be provided, and not only error but also one up to pth
differential error will be available as the switching variable. The
switching mechanism is derived based on Lyapunov stability
theorem by utilizing the state parameter of dynamic tracking
error obtained from the prediction model. Therefore, the switching
mechanism becomes more effective and efficient. Moreover, the
proposed switching formula can use the parameter of prediction
model presented by SDPE as variables of the switching condition
criterion.

A QARXNN model can be simplified as a linear correlation
between the input vector and its coefficients. An embedded
system is a subsystem used to parameterize the regression or the
input vector. A nonlinear model such as a feedforward NN, a
neuro-fuzzy network, or a wavelet network can be used as an
embedded system. The output is the coefficient of the regression
vector called an SDPE [12–14]. The difference between using
an NN as an embedded system for QARXNN models and the
others is that the bias vector of the output nodes of an NN is
from the estimated parameters of the linear estimator. With one
prediction model of the QARXNN, we have two estimators: linear
and nonlinear. A linear parameter estimator (LPE) is estimated
using a least-square error (LSE) algorithm. It is set as the bias
vector for the output nodes of an NN. The switching mechanism
works to select the linear or nonlinear estimators based on the
proposed switching condition index. The controller is derived
from the parameter of the selected estimator. The switching
condition index is used only to check the stability condition of
a nonlinear controller based on the Lyapunov Stability Theorem
and to switch to the linear controller if it is not stable, and
vice versa.

By using the proposed switching law, the controller comprises
a linear-robust-adaptive controller (LRAC), a nonlinear-robust-
adaptive controller (NRAC), and a switching mechanism. An
NRAC controller is designed based on a nonlinear estimator,
whereas an LRAC is designed by using a linear estimator.
At the beginning, a QARXNN model is used to identify a
dynamic system online. The network parameters are updated
continuously in accordance with the sampling time. The trained
network weights of QARXNN are used to estimate an SDPE
by the next regression input. From the estimated parameters of
the linear and nonlinear parts, the dynamic tracking error is
derived. The stability of the overall system is then verified by
the Lyapunov theorem so that ultimately bounded tracking is
accomplished.

The main contributions of this paper are summarized as follows.
(i) A new controller based on a simplified QARXNN predictive
model is constructed to deal with its computational complexity for
controlling a nonlinear system mixed with external disturbances.
(ii) A new switching rule based on the Lyapunov stability theorem
utilizing the state parameters of dynamic tracking error is proposed
so that the controller can work more effectively and efficiently. (iii)
Simulation results are given to demonstrate the effectiveness of the
proposed approach.

2. Quasi-ARX Neural Network Model

Consider a single-input, single-output (SISO), black-box, time-
invariant system whose input–output relationship is described by
the following:

y(t) = g(φ(t)) (1)

where g(·), φ(t) = [y(t − 1) · · · y(t − ny ) u(t − 1) · · · u
(t − nu)]T, y(t) ∈ R is the unknown nonlinear function, regression
or input vector, and system output, and t = 1, 2, · · · denotes the
sampling of time. By using a Taylor expansion series and sys-
tem dynamics, the nonlinear system (1) can be presented as a
linear correlation between a nonlinear coefficient (Taylor coef-
ficient) and its regression or input vector, described as follows
[2,12,14]:

y(t) = φT(t)ℵ(ξ(t)). (2)

where ℵ(ξ(t)) = [a(1,t) · · · a(ny ,t) b(1,t) · · · b(nu ,t)]T denotes the out-
put of an embedded submodel to parameterize the regression
vector. ξ(t) = [y(t − 1) · · · y(t − ny ) u(t − 2) · · · u(t − nu) ν(t)]T

and ν(t) are the input of an embedded system injected into a
QARXNN model and a virtual input, respectively. Incorporated
into an NN selected as an embedded system, a QARXNN model
is rewritten as

y(t) = φT(t)ℵ(ξ(t))

ℵ(ξ(t), �) = W2�W1(ξ(t)) + θ (3)

= δ(ξ(t)) + θ (4)

where � = {W1, W2, θ} are the network parameters, and � is the
diagonal nonlinear operator with identical sigmoidal elements on
hidden nodes.

In (3) and (4), we define the system model with two linear θ

and nonlinear δ(ξ(t)) parameters. θ is a bias vector of the output
nodes of an NN. The difference with the other NN is that θ is
the linear parameter, i.e. estimated based on the linear estimator,
that uses an LSE algorithm. The coefficient ℵ(ξ(t)) of an NN
is composed hierarchically based on the following identification
scheme: First, the system is estimated under a linear model using
a least-square error (LSE) algorithm. Second, θ is set as the bias
vector of the output nodes of an NN, which is an embedded system
of a QARXNN model to parameterize the regression vector. The
linear parameter (LP) is estimated by using the LSE algorithm
with the output predictor, described by the following:

yL(t) = a(L,1)y(t − 1) + a(L,2)y(t − 2)

+ a(L,ny )y(t − ny ) + b(L,1)u(t − 1)

+ b(L,2)u(t − 2) + b(L,nu )u(t − nu).

yL(t) = φT(t)θ (5)

where θ = [a(L,1) · · · a(L,ny ) b(L,1) · · · b(L,nu )]T is the linear-
parameter estimation, which is set as a bias vector for MLPNN. By
incorporating ℵ(ξ(t)) to ensure the stability and control accuracy,
we divide the linear and nonlinear parts of the SDPE equipped
with a switching mechanism. When performing a switching mech-
anism, two linear and nonlinear estimators will be available: (i) a
linear estimator with the estimated parameter θ , and (ii) a nonlin-
ear estimator with the estimated parameter ℵ(ξ(t)). The model in
(2) can be rewritten as follows:

y(t) = φT(t)(δ(ξ(t)) + θ)

= φT(t)δ(ξ(t)) + φT(t)θ (6)

The details of the algorithm of the QARXNN model can be
found in Refs [12,15,16]. A QARXNN model with an MLPNN set
as an embedded system is shown in Fig. 1. In our main theoretical
result, the following assumptions are made:

A1. The pairs of the input–output of the training data are
bounded.
A2. The coefficients of the regression vector ℵ(ξ(t)) are bounded.
A3. Optimal weights of the regression coefficient ℵ∗(ξ(t)) exist.
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Fig. 1. Quasi-ARX neural network model with an embedded
system of neural network

3. Control Strategy

The model in (2) can be rewritten in the form of the
relationship between the input vector and its coefficients as
follows:

y(t) = â(1,t)y(t − 1) + â(2,t)y(t − 2)

+ â(ny ,t)y(t − ny ) + b̂(1,t)u(t − 1)

+ b̂(2,t)u(t − 2) + b̂(nu ,t)u(t − nu). (7)

where ℵ̂(ξ(t)) = [â(1,t) · · · â(ny ,t) b̂(1,t) · · · b̂(nu ,t)]T is a state-
dependent parameter estimation. To derive the control signal, the
model in (7) can be rewritten as

u(t − 1) = 1

b̂1,t
(y(t) + g(t)) (8)

g(t) = −â(1,t)y(t − 1) − â(2,t)y(t − 2)

−â(ny ,t)y(t − ny ) − b̂(2,t)u(t − 2)

−b̂(nu ,t)u(t − nu)). (9)

If the model in (2) is rewritten by (7), it satisfies the input–output
mapping of the system, and the assumptions A1–A3 are fulfilled,
then the output at time (t + d) can be predicted. Equation (2) is
regressed at time (t + d) to calculate the output at d steps ahead
of the prediction, described as follows:

y(t + d) = φT (t + d)ℵ̂(ξ(t + d)) (10)

where ℵ̂(ξ(t + d)) = [â(1,t+d) · · · â(ny ,t+d) b̂(1,t+d) · · · b̂(nu ,t+d)]T is
the coefficient of the input vector, φ(t + d) = [y(t + d − 1) y(t +
d − 2) · · · y(t + d − ny ) u(t + d − 1) u(t + d − 2) · · · u(t + d
−nu)]T is the input vector at d steps ahead of the predic-
tion, and ξ(t + d) = [y(t + d − 1) y(t + d − 2) · · · y(t + d − ny )

u(t + d − 2) u(t + d − 3) · · · u(t + d − nu − 1) ν(t + d)]T. The
online step ahead of the prediction, d , is equal to 1. From (10),
we have the following:

u(t) = 1

b̂1,t+1
(y(t + 1) + g(t + 1)) (11)

g(t + 1) = −â(1,t+1)y(t) − â(2,t+1)y(t − 1)

− · · · − â(ny ,t+1)y(t − ny + 1) − b̂(2,t+1)u(t − 1)

− · · · − b̂(nu ,t+1)u(t − nu + 1)). (12)

where u(t) is a control signal corresponding to a nonlinear
estimator ℵ̂(ξ(t)). For the control signal calculated by using a
linear predictor, ℵ̂(ξ(t)) is replaced with θ̂ .

By using a nonlinear estimator, the control accuracy can be
maintained. However, it is difficult for the control signal calculated
based on a nonlinear estimator to guarantee the stability of the
closed-loop controller. Therefore, a linear estimator is used to
keep the closed-loop stability [2,8,10]. Thus, the switching line is

Calculate �
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×

××
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parameter
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u y
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‚�

‚ ‚� + �(.)

‚� ‚�(�(t))

ℵ(.) =
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Fig. 2. Switching mechanism using the linear and nonlinear
parameter estimators

introduced between the linear part θ and the nonlinear part δ(ξ(t))
of an SDPE, described as follows:

ℵ̂(ξ(t)) = θ̂ + χ(t)δ̂ (13)

u(t) = χ(t)un + (1 − χ(t))ul (t) (14)

where ul is a control signal calculated by the linear robust control
that uses the parameters of the linear estimator θ̂ , and un is a
control signal from the nonlinear robust control that uses the
parameters of the nonlinear estimator by summing θ̂ and δ̂(ξ(t)).
χ(t) is a switching line, with χ(t) = 1 denoting nonlinear robust
control and χ(t) = 0 denoting linear robust control, which is
shown by Fig. 2.

4. Switching Condition

The use of a nonlinear estimator-based control can improve the
control accuracy, but it is difficult to ensure closed-loop stability.
The use of a linear estimator-based control can ensure the closed-
loop stability, but it is low in accuracy. To improve the overall
control performance, a switching condition is used to monitor
the stability of the closed-loop system at all times when using
a nonlinear controller. Therefore, the analysis of the switching
conditions is placed on the use of the nonlinear controller. This
proposed switching rule is based on the stability of the dynamic
tracking error, defined as follows:

E (t) = (e(t), ė(t), ë(t), · · · , ėp−1(t)),

e(t) = y(t) − yd (t),

ė(t) = ∂e(t)

∂t
= (e(t) − e(t − 1))/�t ,

... ,

ėp−1(t) = (e(t − p + 2) − e(t − p + 1))/�t , (15)

where yd (t) is the reference input trajectory. The tracking error
vector is described as follows:

ė(t) = ∂e(t)

∂t
= (e(t) − e(t − 1))/�t ,

= ((y(t) − yd (t)) − (y(t − 1) − yd (t − 1)))/�t

= (�y(t) − �yd (t))/�t � ẏ(t) − ẏ d (t), (16)
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where the notation of �y(t) denotes y(t) − y(t − 1). The closed-
loop system of the tracking error vector dynamics is described as
follows:

ẏp(t) = ẏ d
p (t) + K TE (t)

ẏp(t) − ẏ d
p (t) = −kp ėp−1(t) − kp−1ėp−2(t) − · · · − k1e(t)

ėp = −kp ėp−1(t) − kp−1ėp−2(t) − · · · − k1e(t)

0 = ėp + kp ėp−1(t) + kp−1ėp−2(t) + · · · + k1e(t)

(17)

where K = [kp , kp−1 · · · k1] ∈ Rp , ki (i = 1, · · · , p) are positive
constants and p is the degree of tracking error derivative.

We define a nonlinear controller-estimation error as

u(t) − u∗(t) = 1

b̂1,t+1
(y(t + 1) + ĝ(t + 1))

− 1

b̂1,t+1
(yd (t + 1) + g(t + 1))

= 1

b̂1,t+1
(y(t + 1) − yd (t + 1)

+ ĝ(t + 1) − g(t + 1))

U (t) = 1

b̂1,t+1
(e(t + 1) + G) (18)

where U = u(·) − u∗(·), G = ĝ(·) − g(·), ĝ(·) are calculated
using nonlinear predictor of QARXNN model. The error tracking
can be obtained as follows:

e(t + 1) = y(t + 1) − yd (t + 1) = b̂1,t+1U (t) − G(t + 1)

ė(t + 1) = e(t + 1) − e(t)

= b̂1,t+1U (t) − b̂1,t U (t − 1) − G(t + 1) + G(t)

ë(t + 1) = ė(t + 1) − ė(t)

= b̂1,t+1U (t) − 2b̂1,t U (t − 1)

+b̂1,t−1U (t − 2) − G(t + 1) + 2G(t) − G(t − 1)

ė3(t + 1) = ė2(t + 1) − ė2(t)

= b̂1,t+1U (t) − 3b̂1,t U (t − 1)

+ 3b̂1,t−1U (t − 2) − b̂1,t−2U (t − 3)

− G(t + 1) + 3G(t) − 3G(t − 1) + G(t − 2)

ė4(t + 1) = ė3(t + 1) − ė3(t)

= b̂1,t+1U (t) − 4b̂1,t U (t − 1)

+ 6b̂1,t−1U (t − 2) − 4b̂1,t−2U (t − 3)

+ b̂1,t−3U (t − 4) − G(t + 1) + 4G(t)

− 6G(t − 1) + 4G(t − 2) − G(t − 3). (19)

Using (17) and (19), the dynamic tracking error can be stated
as follows:

Ė = AE + BU + G (20)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0
.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 1
−kp −kp−1 · · · −k1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎝

b̂1,t+1 0 0 0
b̂1,t+1 −b̂1,t 0 0

.

.

.

.

.

.

.

.

.

.

.

.

c1b̂1,t+3−p −c2b̂1,t+2−p · · · (−1)p cp+1b̂1,t+2−p

⎞
⎟⎟⎟⎟⎠ ,

U =

⎛
⎜⎜⎝

U (t)
U (t − 1)

· · ·
U (t − p + 1)

⎞
⎟⎟⎠ , and

G =

⎛
⎜⎜⎜⎜⎜⎝

−G(t + 1)

−G(t + 1) + G(t)

.

.

.

−c1G(t + 3 − p) + · · · + (−1)p+1cp+1G(t + 2 − p)

⎞
⎟⎟⎟⎟⎟⎠ where A is a

nonsingular matrix and cn is is a binomial series coefficient such

as

(
p

r

)
= p!

r! (p−r)! , 0 ≤ r ≤ p.

Using (17) and (20), we can calculate K such that the roots of
the characteristic equation (20) can be chosen strictly in such a
way that the poles lie in the left half of the complex plane. This
will ensure limt→∞ e(t) = 0. A minimum-approximation control
error can be defined as follows:

ε = |u∗ − u(E |ℵ∗(·))|. (21)

The controller’s objective is to maintain the stability and accuracy
of the closed-loop system by considering ε such that:

ℵ∗(·) = arg min
ℵ(·)∈R

[sup
E∈R

|U |],

where ℵ∗(·) is an optimal network weight that achieves the
minimum approximation error obtained through network learning.
If the system dynamic in (20) is a bounded by (|U | < ε), then
there are will be a positive real number of ε. By introducing ε in
(20), it will be as follows:

Ė = AE + B(U (E |ℵ(·)) − U (E |ℵ∗(·)) − ε) + G . (22)

Consider a Lyapunov function

V (t) = 1

2
E T PE (23)

where P is a symmetric positive-definite matrix. Since V (t)
was selected to be positive definite, V̇ (t) has to be negative
semidefinite to make the system uniformly stable. Therefore,
we require V̇ (t) = −Ė T QE to be negative semidefinite, which
implies V (t) ≤ V (0). The negative semidefinite matrix Q is
given by

Q = −(AT P + PA) (24)

Theorem 1: Suppose a dynamic tracking error is described by the
following:

Ė = f (E , t) (25)

where f (0, t) = 0 for all instances of t . If there exists a scalar
function V (E , t) having a continuous first partial derivative
satisfying the conditions:

1. V (E , t) is a positive definite, and
2. V̇ (E , t) is a negative semidefinite,

then the equilibrium state at the origin is uniformly stable. To
prove it, we note any trajectory of E such that

V (E , t) = V (E , 0) +
∫ t

0
V̇ (E , τ)dτ. (26)

V̇ (E , t) is negative semidefinite; hence, V (E , t) is nonincreasing
along the corresponding trajectory.

For the system (22), an equilibrium state Ee is defined
as f (E , t) = 0, ∀t . For nonlinear systems, there are one or
more Ee . We denote a spherical region of radius r about an
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equilibrium state as ‖ E − Ee ‖≤ r and the Euclidean norm
defined by

‖ E − Ee ‖= ((E1 − E1e)
2 + · · · + (Ep − Epe)

2)
1
2 . (27)

Let S (γ ) consist of all points such that ‖ E − Ee ‖≤ γ , where
γ ≥ ε. The time derivative of the Lyapunov function along any
trajectory is

V̇ (t) = 1

2
Ė TPE + 1

2
E T PĖ

= 1

2
(AE + B(U (E |ℵ(·)) − U (E |ℵ∗(·)) − ε) + G)TPE

+ 1

2
E TP(AE + B(U (E |ℵ(·)) − U (E |ℵ∗(·)) − ε) + G)

= 1

2
(E TATPE + E TPAE ) + 1

2
(B(Ũ − ε) + G)TPE

+ 1

2
E T P(B(Ũ − ε) + G)

= − 1

2
(E T QE ) + 1

2
((B(Ũ − ε) + G)TPE

+ E TP(B(Ũ − ε) + G))

= − 1

2
(E TQE ) + (B(Ũ − ε) + G)TPE

= − 1

2
(E TQE ) + (Ũ − ε)T BTPE + GTPE (28)

where Ũ = U (E |ℵ(·)) − U (E |ℵ∗(·)).

Theorem 2: Using the prediction model (2), the control law given
in (14), with the use of nonlinear parameter ℵ̂(.) and a positive
constant ε, the switching condition is defined as

ρ ≤ −1

2
(E TQE ) + (Ũ − ε)TBT PE + GTPE (29)

where ρ is a switching condition that is obtained from the time
derivative of a Lyapunov function. Therefore, limt→∞ E (t) = 0,
E (t) → 0 at t → ∞, and the tracking error e will converge to
zero.

The switching logic is based on the condition of guaranteeing the
stability of the closed-loop controller. The control signal calculated
by using nonlinear parameters sometimes breaks the stability of
the closed-loop controller ρ > 0. We cannot control the unstable
system. However, the use of a linear and robust adaptive control
(LRAC) is always stable during the whole time. Therefore, to
guarantee the stability of the closed-loop controller, an LRAC is
used only when the use of a nonlinear and robust adaptive control
destroys the stability of the closed-loop controller. According to
the Lyapunov theory, the system is stable if the time derivative of
the Lyapunov function is negative semidefinite, ρ ≤ 0.

By V̇ (t) ≤ 0, it implies that E is bounded by a positive constant
ε that satisfies (29). From the convergence analysis based on the
Lyapunov theorem, the following can be concluded:

1. V̇ (t) is actually a total derivative of V (t) with respect
to t along the solution of the system. By V̇ (t) ≤ 0, it
implies V (t) is a decreasing function of t . By (29) with a
positive constant ε, the closed-loop error trajectory of (23)
is positive definite and nonincreasing, and by (22), Ė is also
bounded. As a result, the QARXNN-based adaptive control
is stable and uniformly bounded. Therefore, limt→∞ E (t) =
0, E (t) → 0 at t → ∞, and the tracking error of the closed-
loop system e will converge to zero.

2. For linear robust control, A is a nonsingular matrix,
and then there exists one equilibrium state. Therefore,
V̇ (t) ≤ − 1

2 (E TQE ), ∀t implies limt→∞ E (t) = 0, E (t) →
0 at t → ∞, and the tracking error of closed-loop system
e will converge to zero for all time.

According to Theorem 2, a switching line is used to change control
action between linear and nonlinear controllers. The proposed

Controller
Nonlinear
systems

QARXNN
model

SDPE
Linear

Switching line

Nonlinear

Dynamic
tracking error

+

–
e

yd y
z–j

z–i

u

‚y

Fig. 3. Nonlinear adaptive predictive controller based on
QARXNN prediction model. i = 1, · · · , ny ,j = 1, · · · , nu

model with only linear parameters has to work until the use of
nonlinear parameters does not damage the stability of closed-loop
system. Therefore, the controller using linear parameters θ̂ will
work all the time, but the nonlinear parameters ℵ̂(ξ(t)) will work
under the switching sequence. The control law (14) works under
the switching line as follows:

χ(t) =
{

1, if ρ ≤ 0
0, otherwise

(30)

For the system (2), a nonlinear predictive controller based on
the QARXNN model contains a feedback controller, a QARXNN
predictive model, and a switching mechanism, as shown by Fig. 3.
Here, the feedback controller performs based on the dynamic
tracking error (22) with the Lyapunov stability theorem of (26) and
(29). By using a QARXNN prediction model with the two linear
and nonlinear estimators (5) and (2), two controllers perform with
the switching mechanism of (14).

The switching mechanism selects the use of either the linear
or nonlinear controller based on the index of ρ in (29) and as
presented in Fig. 2. By ρ > 0, the closed-loop system is unstable
using the nonlinear controller. The switching mechanism switches
to using the linear controller and resets the nonlinear part δ(ξ(t))
of an SDPE. In the following, the design algorithm of the proposed
control law can be summarized as follows:

Step 1. Identify the system under the QARXNN model described
in Section 2.

Step 2. Find the estimated parameter of an SDPE using the
embedded system of the QARXNN prediction model.

Step 3. By using an SDPE, calculate the dynamic tracking error
shown by the dynamic matrix of A in (20); and by
introducing ε, find a new state of dynamic tracking error
in (22) to obtain stability region with a specific ε (ε ≤ γ ).

Step 4. Check the stability of the NRAC controller by satisfying
(29) and switching line of (30).

Step 5. Calculate the controller signal using (11); two controllers
can be obtained by using the linear and nonlinear parts
parameters of an SDPE via the switching mechanism in
(14), (29), and (30).

Step 6. Go to Step 1.

5. Simulation Results

In this section, two illustrative examples are provided to
demonstrate the performance of the proposed APC-QARXNN
controller. The examples also show the effect of set-point changes
and external disturbances on the control systems employing the
proposed controller.
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Fig. 4. Output responses
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Example 1: Consider the control of a nonlinear discrete-time
dynamical system with unstable zero dynamics given by [8,9].
The system model is described as follows:

y(t) = 2.6y(t − 1) − 1.2y(t − 2) + u(t − 1)

+ 1.5u(t − 2) + 0.5y(t − 1)sin(u(t − 1)

+ u(t − 2) + y(t − 1) + y(t − 2)) (31)

The objective is to make the system output y(t) track a reference
input (desired output trajectory) yd (t) specified by the following:

yd (t) = 3sign(sin(π t/50)), 0 < t ≤ 250. (32)

From the system model (31), an embedded system MLPNN
of QARXNN is constructed with a three-layer neural network.
The input vector of φ(t) is specified by the following: φ(t) =
[y(t − 1) y(t − 2) u(t − 1) u(t − 2)]T and nu = 2 and ny = 2.
The number of input nodes, hidden nodes, and output nodes
is also the same as n = nu + ny . The constant learning rate of
BP algorithm is selected by ηbp = 0.1, and the gain of adaptive
tracking control based on the QARXNN model is given by γ =
0.02, p = 2, and Q =

(
0.1 0
0 0.1

)
. The output responses, the

control signals, the tracking errors, and the switching sequences
of the proposed controller compared with the MVC-QARXNN are
shown in Figs 4–7. To evaluate the performance of the control
system, one defines the root-mean-square (RMS) error as follows:

RMS =
√∑N

t=1(y(t) − yd (t))2

N
(33)

where yd (t), y(t), t = 1, 2, · · · , N are the desired output, the output
of controlled system, and the time sampling, respectively, and N
is the length of the input-output of controlled system. Figure 7
shows the switching sequence, where χ(t) = 1 denotes the use of
NRAC and χ(t) = 0 denotes the use of an LRAC. In Table I, the
RMS value of the proposed control system is less than that of the
MVC-QARXNN-based control. As we can see, by using the same
prediction model, the performance of the proposed controller is
significantly better.

As we can see from Fig. 7, the use of nonlinear control un

(χ(t) = 1) is used almost everywhere in time t . However, linear
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Fig. 7. Switching sequence (0: linear; 1: nonlinear)

Table I. Simulation results of the control systems

Controllers Network RMS
parameters error

Proposed controller 36 0.201
MVC-QARXNN [2] 36 0.456
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Fig. 8. Response of the closed-loop system by using only nonlin-
ear control

control ul is still used to ensure the closed-loop stability. The use
only nonlinear control is difficult to ensure the close-loop control
stability due to the uncertainty of the nonlinear system. We cannot
control the unstable system. The result of using only un is shown
in Fig. 8.

Example 2: To further illustrate the applicability of APC-
QARXNN proposed in this paper, a nonlinear discrete-time
dynamical system mixed with external disturbances given by
[17,18] is observed. The system model is stated as follows:

y(t) = 0.9722y(t − 1) + 0.378u(t − 1) − 0.1295u(t − 2)

− 0.3103y(t − 1)u(t − 1) − 0.04228y2(t − 2)

+ 0.1663y(t − 2)u(t − 2) − 0.03259y2(t − 1)y(t − 2)

− 0.3513y2(t − 1)u(t − 2)

+ 0.3084y(t − 1)y(t − 2)u(t − 2)

+ 0.1087y(t − 2)u(t − 1)u(t − 2) + ω(t). (34)
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The reference input and the external disturbances ω(t) are
given by

yd (t) =
{

1, 0 < t ≤ 200
0, 200 < t ≤ 400

(35)

ω(t) =
⎧⎨
⎩

0, 0 < t ≤ 100
0.05, 100 < t ≤ 300
0.2, 300 < t ≤ 400

(36)

The input variables of the QARXNN model and the gain of the
adaptive tracking control are the same as in Example 1. To test the
robust characteristics of the proposed controller, this example is
performed in which the system is mixed with external disturbances.
Figures 9–12 show the output responses, the control signals,
the tracking errors, and the switching sequences of the proposed
controller compared with the MVC-QARXNN based control. With
the output response and error shown in Figs 9 and 11, we see that
the proposed controller can adapt the external disturbance mixed
in nonlinear system. The details of the comparison are summarized
in Table II. As can be seen, the performance of the proposed
controller is better than that of the other controllers.

From the simulation results, Figs 7 and 12 show that the
amount of time switching to the linear controller is less by using
the proposed controller compared to the previous one of MVC-
QARXNN-based control. It can be concluded that the proposed
switching technique is more effective. With more time to switch
to the nonlinear controller, the accuracy of the control system
will be increased as well. The use of MVC-QARXNN-based
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Fig. 12. Switching sequence (0: linear; 1: nonlinear)

Table II. Simulation results of the control systems

Controllers Network RMS
parameters error

Proposed controller 36 0.0602
SPC [18] 24 0.0866a

Fuzzy-based GPC [18] 24 0.1192a

MVC-QARXNN [2] 36 0.1271
GPC [18] 0 0.1649a

aThe results are listed in the original papers.

control switches to linear control longer and more often. This is
because the switching based on error vector does not provide much
information to determine the stability of nonlinear systems. As for
switching techniques based on the state of dynamic error, it is
possible to get more information about the stability of the closed-
loop nonlinear controller. Therefore, the controller performance
can be increased.

6. Discussion and Conclusion

This paper introduced an adaptive controller based on the pre-
diction model of the quasi-ARX neural network (APC-QARXNN).
The difference from our previous approach of MVC-QARXNN
was shown by its controller strategy and switching rule. The
switching based on an index-convergence error was not efficient,
because it caused unnecessary switching to the linear controller.
Therefore, with APC-QARXNN, a new switching rule based on
the Lyapunov Stability Theorem was proposed by utilizing the
state parameters of the dynamic tracking error so that the con-
troller could work more effectively and efficiently. The advan-
tages of using an APC-QARXNN are as follows: (i) A simplified
QARXNN model presented by a state-dependent parameter esti-
mation (SDPE) is used to derive the controller formulation to deal
with its computational complexity. (ii) The control law can be
derived easily from the model prediction based on the lineariza-
tion technique, where the system is linear to the input controller.
The SDPE is used to parameterize the input vector. Hence, the
control law is derived by utilizing the transformation by its lin-
ear inverse. (iii) A Lyapunov stability-based switching control is
performed to guarantee the closed-loop stability using the SDPE.
The proposed switching rule improves the controller’s accuracy by
reducing unnecessary switching to the linear controller. The major
contribution of this paper is the development of the QARXNN-
based adaptive control with a new switching mechanism applied
for a nonlinear system mixed with external disturbances. Finally,
two numerical simulation results confirmed the theoretical analysis.
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