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An improved Elman neural network (IENN) controller with particle swarm optimization (PSO) is presented for nonlinear
systems. The proposed controller is composed of a quasi-ARX neural network (QARXNN) prediction model and a switching
mechanism. The switching mechanism is used to guarantee that the prediction model works well. The primary controller is
designed based on IENN using the backpropagation (BP) learning algorithm with PSO. PSO is used to adjust the learning
rates in the BP process for improving the learning capability. The adaptive learning rates of the controller are investigated via
the Lyapunov stability theorem. The proposed controller performance is verified through numerical simulation. The method is
compared with the fuzzy switching and 0/1 switching methods to show its effectiveness in terms of stability, accuracy, and
robustness. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

Neural predictive control (NPC) of nonlinear dynamical systems
has attracted much attention and has developed significantly over
the past few decades. Some researchers have successfully applied
a neural network (NN) as the model identifier of the NPC system
for controlling real processes. Zeng et al. [1] have established an
NN predictive control scheme for studying the coagulation process
of waste water treatment in a paper mill, and Wang et al. [2] have
presented an adaptive NN model based predictive control for the
air–fuel ratio of spark ignition (SI)[vnsn1] engines.

The application of NNs has been shown to be limited to static
problems because of its feed-forward network structure. Recurrent
NN (RNN), a modified model of NN, can be more suitable
for real-time control applications than NN. Huang and Lewis
[3] developed and analyzed an RNN predictive feedback control

structure for a class of uncertain, continuous-time, nonlinear, and
dynamic time-delay system in a canonical form. The improved
Elman neural network (IENN) as a kind of RNN was proposed to
improve the dynamic characteristics and convergence speed [4, 5].
A computed-torque controller based on an IENN approximation
was proposed to deal with unmodeled, bounded disturbances and
unstructured, unmodeled dynamics of a robot arm [4]. An IENN
was developed to realize failure detection in a hydraulic servo
system [5].

However, the major problems for these applications are (i) time-
consuming computation and (ii) stability of the whole system.
There are three objectives of this research. The first objective is
to develop an IENN-PSO (particle swarm optimization) predictive
controller based on quasi-ARX neural network (QARXNN) for
nonlinear systems where the predictive controller is derived from
the well-known generalized predictive performance criterion. This
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controller takes less time for computation, thereby overcoming
a major obstacle of conventional NPCs which have large matrix
inversion calculations and numerous matrix multiplications for
finding the loner predictive control. The second objective is
to guarantee the stability of the whole system with sufficient
conditions that are established via Lyapunov stability theory. The
third objective is to verify the proposed method by computer
simulation results for nonlinear single-input single-output (SISO)
systems and nonlinear governed systems. In order to guarantee
that the QARXNN prediction model works well, a switching
mechanism is established based on system input–output variables
and prediction errors.

The rest of the paper is organized as follows: In Section 2, the
considered system is given. In Section 3, a QARXNN prediction
model is introduced based on an NN. Section 4 describes the IENN
controller using PSO for learning rates adjustment, investigated by
the Lyapunov stability theorem. Then, numerical simulations are
carried out to show the effectiveness of the proposed method in
Section 5, by comparison with fuzzy switching, 0/1 switching, and
linear control. Finally, Section 6 presents the conclusions.

2. Problem Description

Consider a nonlinear, time-invariant, dynamical system with
a single input and single output whose input–output relation is
described by

y(t) = g(ϕ(t)) + v(t) (1)

ϕ(t) = [y(t − 1), ..., y(t − n), u(t − d), ...,

u(t − m − d + 1)]T (2)

where y(t) denotes the output at time t (t = 1, 2, ...), u(t) is the
input, d is the known integer time delay, ϕ(t) is the regression
vector, and v (t) is the system disturbance. g(.) is a nonlinear
function.

Now the following assumptions will be made:
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ASSUMPTION 1.
(i) g(.) is a continuous function and, at a small region around

ϕ(t) = 0, it is C ∞ continuous;
(ii) there is a reasonable unknown controller which may be

expressed by u(t) = ρ̃ (̃ξ ( t)) where ξ̃ (t) = [y(t)...y(t − n)u(t − 1)

...u(t − m) y*( t+1)...y*( t+1-l)]T ( y*( t) denotes reference output).

3. Quasi-ARX Neural Network

3.1. Regression form representation Under Assump-
tion 1(i), the unknown nonlinear function g(ϕ(t)) can be Taylor-
expanded in (1) over a small region around ϕ(t) = 0 and y0 = g(0):

y(t) = g(0) + g ′(0)ϕ(t) + 1

2
ϕT (t)g ′′(0)ϕ(t) + · · · + v(t) (3)

y(t) = y0 + ϕ
T
(t)θ(ϕ(t)) + v(t) (4)

where

θ(ϕ(t)) = (g ′(0) + 1

2
ϕT (t)g ′′(0))T (5)

θ(ϕ(t)) = [a1,t · · · an ,t b0,t · · · bm−1,t ]
T . (6)

In this case, the coefficients ai ,t = ai (ϕ(t)) and bj ,t = bj (ϕ(t)) are
nonlinear functions of ϕ(t).

With the aim of predicting y(t) by the input–output data up
to time t − d in the model predictor, the expressions for the
coefficients ai ,t and bj ,t are

ai ,t = ãi ,t = ãi (φ(t − d)), (7)

bj ,t = b̃j ,t = b̃j (φ(t − d)) (8)

where φ(t − d) = q−d φ(t), and q−1 is the backward shift opera-
tor, e.g., q−1u(t) = u(t − 1). Then, φ(t) is a vector

φ(t) = [y(t) · · · y(t − n + 1) u(t) · · · u(t − m − d + 2)]T . (9)

Then, two polynomials A(q−1, φ(t)) and B(q−1, φ(t)) based on
the coefficients ai ,t and bj ,t are defined as

A(q−1, φ(t)) = 1 − a1,t q
−1 − · · · − an ,t q

−n , (10)

B(q−1, φ(t)) = b0,t + · · · + bm−1,t q
−m+1. (11)

A similar linear ARX model can be developed:

A(q−1, φ(t))y(t) = y0 + B(q−1, φ(t))q−d u(t − 1), + v(t). (12)

For a system described by (12), a d -step predictor is given as in
Ref. [6]:

ŷ(t + d | t , φ(t)) = yφ + α(q−1, φ(t))y(t)

+ β(q−1, φ(t))u(t) (13)

where
yφ = F (q−1, φ(t))y0,
α(q−1, φ(t)) = G(q−1, φ(t)),
α(q−1, φ(t)) = α0,t + α1,t q−1 + · · · + αn−1,t q−n+1,
β(q−1, φ(t)) = F (q−1, φ(t))B(q−1, φ(t)),
β(q−1, φ(t)) = β0,t + β1,t q−1 + · · · + βm+d−2,t q−m−d+2,

and G(q−1, φ(t)), F (q−1, φ(t)) are unique polynomials satisfying

F (q−1, φ(t))A(q−1, φ(t)) = 1 − G(q−1, φ(t))q−d . (14)

Considering the linear ARX prediction model to be linear in
the input variable u(t), a controller can be obtained with the
parameters directly from the predictor. To resolve this problem,

an extra variable x(t) is introduced to replace the variable u(t) in
φ(t) with an unknown nonlinear function ρ(ξ(t)), where

ξ(t) = [y(t) · · · y(t − n1 + 1) x(t + d) · · ·
x(t − n3 + d + 1) u(t − 1) · · · u(t − n2)]

T (15)

including the extra variable x(t + d) as an element. Under
Assumption 1(ii), the function ρ(ξ(t)) exists. Then we have a
predictor represented as

ŷ(t + d | t , ξ(t)) = yξ + α(q−1, ξ(t))y(t)

+ β(q−1, ξ(t))u(t) (16)

where yξ is yφ , where the variable u(t) is replaced by ρ̃(.).

3.2. Switching mechanism Consider that the predictor
has a linear part and a nonlinear part whose coefficients depend on
ξ(t). Determine a switching function χ(t) as introduced by Wang
et al. [7, 8]; when χ(t)=1, the nonlinear part is chosen with the
linear part to predict the nonlinear system. Otherwise, if χ(t)=0,
then the nonlinear part is neglected for some reasons. Now we
have the new d -step-ahead predictor described by

ŷ(t + d | t , ξ(t)) = yξ ,χ + α(q−1, ξ(t), χ(t))y(t)

+ β(q−1, ξ(t), χ(t))u(t), (17)


(t) = [1 y(t) · · · y(t − n + 1)u(t) · · · u(t − m − d + 2)]T , (18)

�(ξ(t), χ(t)) = [yξ ,χ α0,t · · · αny −1,t β0,t · · · βnu +d−2,t ]
T . (19)

Finally, we get the ARX-like macro-model expression given by

ŷ(t + d | t , ξ(t)) = 
T (t)�(ξ(t), χ(t)). (20)

The QARXNN with switching law is described by

ŷ(t + d | t , ξ(t)) = 
T (t)ℵ(ξ(t), χ(t), �) (21)

where ℵ(., ., .) is the generalized three-layer NN with the structure
using n input nodes, M sigmoid hidden nodes, and n + 1 linear
output nodes. The number of input nodes is N = dim(ξ(t)) = n +
m , and the number of output nodes is equal to dim(
(t)) = N + 1.
The three-layer NN is defined as

ℵ(ξ(t), χ(t), �) = θ + χ(t)W2
(W1 + B) (22)

where � = W1, W2, B , θ is the parameters set of the NN. We can
divide the above into two classes: the linear part θ , and nonlinear
parts W1, W2, and B . Now, θ is updated as

θ̂ (t) = θ̂ (t − d) + a(t)
(t − d)e1(t)

1 + 
(t − d)T 
(t − d)
(23)

where θ̂ (t) is the estimate of θ at time instant t . And a(t) = 1 if
|e1(t)| > 2�; otherwise a(t) = 0 where e1(t) is the error of the
linear part and is defined as follows:

e1(t) = y(t − d) − 
(t)T θ̂ (t). (24)

The error of the nonlinear part parameters is adjusted by the BP
algorithm and defined by

e2(t) = y(t + d) − 
(t)T θ̂ (t)

− 
(t)T W2(t)
(W1(t)ξ(t) + B(t)) (25)

where W1(t), W2(t), and B(t) are the estimates of W1, W2, and B
at time instant t , respectively. Finally, the switching law is defined
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by the following function:

Ji (t) =
t∑

l=k

ai (l)(‖ei (l)‖2 − 4�2)

2(1 + ai (l)
(l − k)T 
(l − k))

+ c
t∑

l=t−N +1

(1 − ai (l) ‖ei (l)‖2), i = 1, 2 (26)

where N is an integer and c ≥ 0 is a predefined constant. The
expression of the switching law χ(t) is based on the switching
criterion function χ(t) = 1 if J1(t) > J2(t); otherwise χ(t) = 0.
By comparing J1(t) and J2(t), we can decide when the nonlinear
part can be neglected. If J1(t) > J2(t), the nonlinear part is added;
else, only use the linear part to identify. If J2(t) is larger than J1(t),
the nonlinear parameter should be reset and switch to linear part so
the prediction model is working well. The switching mechanism
was used for making sure that the prediction model was working
well. In the linear case, the system is surely stable but in the
nonlinear case the system may be overfitting, so we need to switch
to the linear case.

4. Design of Controller

4.1. Controller scheme The purpose of IENN-PSO is
to design a control law and an updating law for the primary
controller parameters, such that the system output y follows the
input reference signal and the closed-loop dynamic performance of
the system follows the predictive model. Figure 1 shows the IENN-
PSO scheme. A switching mechanism is employed to improve the
performance of the QARXNN prediction model.

4.2. Improved Elman neural network controller
design An IENN performs better than the common Elman
neural network (ENN) because the feedback of the output layer is
taken into account, so better learning efficiency can be obtained. In
a common ENN, the hidden layer neurons are fed by the outputs
of the context neurons and the input neurons. Because a com-
mon ENN only employs the hidden context nodes to disperse the
message, it has low learning speed and convergence precision.
Figure 2 shows the structure of the proposed IENN including the
input layer (i layer), the hidden layer (j layer), the context layer
(r layer), and the output layer (o layer) with two inputs and one
output [9]. The basic function and the signal propagation of each
layer are introduced in the following:

Layer 1 (input layer): the node input and the node output are
represented as

Xi (k) = fi (neti ) = neti = ei (k) (27)

where ei (k) and Xi (k) are the input and the output of the input
layer, respectively, and k represents the k th iteration.

Layer 2 (hidden layer): the node input and the node output are
represented as

Xj (k) = S (netj ) (28)

Quasi-ARX NN
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Fig. 1. IENN-PSO structure by neural network
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Fig. 2. Structure of the improved Elman neural network

netj =
∑

i

wij Xi (k) +
∑

r

wrj X
c
r (k) (29)

where Xj (k) and netj are the output and the input of the
hidden layer, wij and wrj are the connective weights of input
neurons to hidden neurons and context neurons to hidden neurons,
respectively, X c

r is the output of the context layer, and S (X ) is
sigmoid function, that is, S (X ) = 1/(1 + e−X ).

Layer 3 (context layer): the node input and the node output are
represented as

X c
r (k) = γ X c

r (k − 1) + Xj (k − 1) (30)

where 0 ≤ γ < 1 is the self-connecting feedback gain.
Layer 4 (output layer): the node input and the node output are

represented as

Yo(k) = f (neto(k)) = neto(k), (31)

neto(k) =
∑

j

wjoXj (k) + woY c(k), (32)

Y c(k) = ζY c(k − 1) + Yo(k − 1) (33)

where Yo(k) is the output of the IENN and also the control effort
of the proposed controller, Y c(k) is the output of the output
feedback neuron, 0 ≤ ζ < 1 is the self-connecting feedback gain,
and wjo and wo are the connective weights of the hidden neurons
to the output neurons and the output feedback neuron to the output
neuron, respectively.

4.3. Learning algorithm The learning algorithm of the
IENN is referred to as the BP learning rule method. To describe
it using the supervised gradient decent method, first the energy
function E is defined as

E = 1

2
(y − ŷ)2 = 1

2
e (34)

where y and ŷ represent the output of the system and output of the
prediction model, respectively, and e denotes the tracking error.
Then the learning algorithm is defined as follows:

Layer 4: the error term to be propagated is given by

δo = − ∂E

∂Yo(k)
= −∂E

∂e

∂e

∂Yo(k)

= −∂E

∂e

∂e

∂ ŷ

∂ ŷ

∂Yo(k)
, (35)
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�wo = −η1
∂E

∂wo

= −η1
∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂wo

= η1δoY c(k), (36)

�wjo = −η2
∂E

∂wjo

= −η2
∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂wjo

= η2δoXj (k). (37)

The connective weights wo and wjo are updated according to the
following equations:

wo(k + 1) = wo(k) + �wo , (38)

wjo(k + 1) = wjo(k) + �wjo (39)

where the factors η1 and η2 are the learning rates.
Layer 3: using the chain rule, the update law of wrj is

�wrj = −η3
∂E

∂wrj

= −η3
∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂Xj (k)

∂Xj (k)

∂wrj

= η3δowjoXj (k)[1 − Xj (k)]X c
r (k), (40)

wrj (k + 1) = wrj (k) + �wrj . (41)

Layer 2: using the chain rule, the update law of wij is

�wij = −η4
∂E

∂wij

= −η4
∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂Xj (k)

∂Xj (k)

∂wij

= η4δowjoXj (k)[1 − Xj (k)]Xi (k), (42)

wij (k + 1) = wij (k) + �wij (43)

where the factors η3 and η4 are the learning rates, and (η1, η2, η3,
η4) will be optimized by the PSO algorithm.

4.4. Learning rate adjustment using PSO PSO is an
algorithm based on a group of flying birds to simulate the behavior
of a swarm as a simplified collective system.

To further improve the learning ability, the PSO algorithm is
adopted for tuning the learning rates η1, η2, η3, and, η4 of the IENN
[10-12].

Step 1: initialization
With Rd

i = [R1
i , R2

i , R3
i , R4

i ] for learning rates (η1, η2, η3, and η4),
the population size is set to P = 15, and the dimension of particle
is set to d=4. The parameters need to be optimized with minimum
and maximum ranges.

Step 2: Define location and velocity
The initial location Rd

i (N ) and the velocities V d
i (N ) of all

particles are randomly generated in the search space. The elements
in vector Rd

i (N ) are randomly generated by

Rd
i ∼ U [ηd

min, ηd
max] (44)

where U [ηd
min, ηd

max designates the result of a uniformly distributed
random variable ranging over the known lower and upper bounded
values ηmin and ηmax of the learning rate.

Step 3: Update the velocity
Every particle in the swarm is updated using (45). The velocity

update law is described as

V d
i (N + 1) = wV d

i (N ) + c1 · r1 · (pbestd
i − Rd

i (N ))

+ c2 · r2 · (gbestd
i − Rd

i (N )) (45)

where the pseudo-random sequences r1 U (0, 1) and r2 U (0, 1) are
used to simulate the stochastic nature of the algorithm. For all
dimensions d , let Rd

i , pbestd
i be the current position and current

personal best position.
Step 4: Update position
The new velocity is then added to the current position of the

particle to find its next position by

Rd
i (N + 1) = Rd

i (N ) + V d
i (N + 1) i = 1, · · · , P . (46)

Step 5: Update pbests If the current position of a particle is
located within the analysis space and does not intrude the territory
of other gbests , the objective function of the particle is evaluated.
The fitness of each particle is calculated by

FIT = 1

0.1 + abs(ŷ − y)
. (47)

By using (46), a gradually increasing fitness function can be
obtained.

Step 6: Update gbests
The gbest is replaced by the best pbest among the parti-

cles. Each particle Rd
i memorizes its own fitness value and

chooses the maximum one that is the best so far, defined as
pbestd

i and the maximum vector in the population pbestd
i =

[pbest1
i , pbest2

i , pbest3
i , · · · pbestd

p ], is obtained.
Step7: Check convergence
Steps 3–6 are repeated until the best fitness value for the

gbest is obviously improved or a set count of the generation is
reached. Finally, the highest fitness value gbestd

i is the optimal
learning rate (η1, η2, η3, η4) of IENN. The acceleration coefficients
c1 and c2 can be used to control the moved distance of a
particle in a single iteration, typically set to 2.0 for simplicity.
The inertia weight w in (48) is used to control the convergence
behavior of the PSO. Small values of w result in a more rapid
convergence usually on a suboptimal position, while large values
may cause divergence. In general, the inertia weight w is set
according to

w = wmax − wmax − wmin

ηmax
· η (48)

where ηmax is the maximum number of iterations, and η is the cur-
rent iteration count. The maximum values of the inertia weights
are wmax = 0.5 and wmin = 0.3, respectively.

4.5. Lyapunov stability analysis for the whole system
The following theorem states that the IENN-PSO controller is

also convergent based on Lyapunov stability theory.
Theorem. Let the weights of IENN are updated along with (36),

(37), (40), and (42). Then the convergence of the IENN (33) is
guaranteed if the learning rate ηi is chosen to satisfy

ηi =
β
[∑my

o=1 eo (k)
∂ ŷo (k)

∂�

]T [ ∑my
o=1 eo(k)

∂ ŷo (k)

∂�

]
[∑my

o=1
∂ ŷo (k)

∂�

]T [∑my
o=1 eo(k)

∂ ŷo (k)

∂�

] (49)

where i=1,2,3,4; the conditions are 0 < β < 2 and � = [
wo

11 · · ·
w o

my nh
w i

11 · · · w i
nh ni

w j
1 · · · w j

nh

]T
. IENN has ni inputs, nh hidden

units and my output variables.

497 IEEJ Trans 9: 494–501 (2014)



I. SUTRISNO, M. ABU JAMI’IN AND J. HU

Proof. Let a Lyapunov function candidate be chosen as l(k) =∑my
o=1 e2

o (k), and let δl(k) = l(k + 1) − l(k) and δeo(k) ≡ eo(k +
1) − eo(k). Then

δl(k) = 2

my∑
o=1

eo(k)δeo(k) +
my∑

o=1

(δeo(k))2. (50)

By the method in Ref. [13], δeo(k) can be represented by
δeo(k) = [∂eo(k)/∂� ]T δ� , while δ� = −ηi (∂yo(k)/∂�), and
(50) becomes

δl(k) = 2

my∑
o=1

eo(k)

[
∂eo

∂�

]T

δ� +
my∑

o=1

([
∂eo

∂�

]T

δ�

)2

= −2ηi

[ my∑
o=1

eo(k)
∂ ŷo(k)

∂�

]T [ my∑
o=1

eo(k)
∂ ŷo(k)

∂�

]

+ η2
i

⎛⎝[ my∑
o=1

∂ ŷo(k)

∂�

]T [ my∑
o=1

eo(k)
∂ ŷo(k)

∂�

]⎞⎠2

. (51)

To ensure that this selected learning rate is inside the stable region,
we set the learning rate ηi as in (49) and then have δl(k) < 0,
which shows that the IENN-PSO is convergent. This completes
the proof of the theorem.

5. Simulation Result

In order to study the behavior of the proposed control method,
a numerical simulation is described in this section.

Example 1:
The nonlinear SISO system to be controlled is described by

y(t) = exp(−y2(t − 2)) ∗ y(t − 1)

1 + u2(t − 3) + y2(t − 2)

+ exp(−0.5 ∗ (u2(t − 2) + y2(t − 3))) ∗ y(t − 2)

1 + u2(t − 2) + y2(t − 1)

+ sin(u(t − 1) ∗ y(t − 3)) ∗ y(t − 3)

1 + u2(t − 1) + y2(t − 3)

+ sin(u(t − 1) ∗ y(t − 2)) ∗ y(t − 4)

1 + u2(t − 2) + y2(t − 2)
+ u(t − 1). (52)

The desired output in this example is a piecewise function:

y∗(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.4493y∗(t − 1)

+0.57r(t − 1), t ∈ [1, 100] ∪ [151, 200]
0.7sign(0.4493
y∗(t − 1)

+0.57r(t − 1)), t ∈ [101, 150]

(53)

where r(t) = 1.2 sin(2π t/25).
We use the following QARXNN prediction model to identify

the system:

y1(t + d |t , ξ(t)) = 
(t)T θ

+ χ(t)
(t)T · W2
(W1ξ(t) + B). (54)

In the nonlinear part, the NN has 1 hidden layer and 20 hidden
nodes, and the other parameters are set as m=4, n=3, and
d=1. First, the QARXNN model can be trained offline by the
hierarchical training algorithm as in Ref. [6].

Figure 3 shows the performance when the IENN controller
with PSO is used. In Fig. 3, the black dotted line is the desired
output, the red solid line denotes proposed method IENN with
PSO control output y(t), and the blue dashed line shows the 0
or 1 switching control output y0(t). Obviously, the control output
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Fig. 3. Comparison result of the proposed method with 0/1
switching method for Example 1
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Fig. 4. Comparison result of the proposed method with fuzzy
switching method for Example 1

with the proposed method is nearly consistent with the desired
output most of the time.

In Fig. 4, the black dotted line is the desired output, the red
solid line denotes the proposed method IENN with PSO control
output y(t), and the green dashed line shows the fuzzy switching
control output y1(t). We can see that the proposed IENN with PSO
control can perform better than fuzzy switching controller and also
better than 0/1 switching controller in three points: (i) convergence
speed, (ii) stability, and (iii) adaptability.

The switching sequence is presented in Fig. 5, where 1 is the
model with nonlinear part and 0 is the model without nonlinear
part. Even though the model with nonlinear part can control very
well, it degrades sometimes and the model with only the linear part
has to work until the nonlinear part can recover. Therefore, the
linear part will work all the time, but the nonlinear part will work
under the switching sequence. The convergence characteristic of
the errors is shown in Fig. 6. A better nonlinear system controller
effect can be seen for the proposed algorithm. Table I gives a
comparison of the errors of the three methods. The error of the
proposed IENN-PSO control system is smaller than that in the
other methods.

Obviously, IENN-PSO controller gives better performance than
the other controllers. For additional comparison, the convergence
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Fig. 5. Switching sequence of the proposed method compared to
other methods for Example 1
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Fig. 6. Convergence characteristics of the errors for Example 1

speeds of the different methods are given in Fig. VI, and classified
in Table II. The proposed IENN-PSO control method gives better
accuracy and also faster convergence than the other methods.

Example 2:
The system is a nonlinear one governed by

y(t) = f [y(t − 1), y(t − 2), y(t − 3), u(t − 1), u(t − 2)] (55)

where

f [x1, x2, x3, x4, x5] = x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

. (56)

The desired output in this example is a piecewise function:

y∗(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.6y∗(t − 1)

+r(t − 1), t ∈ [1, 100] ∪ [151, 200]

0.7sign(0.4493

y∗(t − 1)

+0.57r(t − 1), t ∈ [101, 150]

(57)

where r(t) = sin(2π t/25).
In the nonlinear part, the NN has 1 hidden layer and 20 hidden

nodes and the other parameters are set as m=4, n=3, and d=1.

Table I. Comparison result of the errors

Method
Mean of
errors

Variance
of errors

IENN + PSO control method 0.00015 0.0033
Fuzzy switching control method 0.00033 0.0051
0/1 switching control method 0.0061 0.0365

Table II. Classification result for different methods

Method Iteration CPU time Accuracy

IENN + PSO control method 183 0.56 98.38
Fuzzy switching control method 254 0.98 97.14
0/1 switching control method 273 1.82 95.87
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Fig. 7. Comparison result of the proposed method with 0/1
switching method for Example 2
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Fig. 8. Comparison result of the proposed method with fuzzy
switching method for Example 2

Figure 7 shows the performance when the IENN controller with
PSO is used.

Figure 7 gives the results of Example 2 whose marks are the
same as in Example 1. In Fig. 7, the output of the proposed IENN
with PSO control almost coincides with the desired output. It
can also be seen that the 0/1 switching control results have some
wobble at the last half-time.
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Fig. 9. Switching sequence of the proposed method compared to
other methods for Example 2

Table III. Comparison result of the errors

Method
Mean of

errors
Variance of

errors

IENN + PSO control method −0.0035 0.0013
Fuzzy switching control method −0.0044 0.0032
0/1 Switching control method −0.0051 0.0067

Table IV. Classification results for the different methods

Method Iteration CPU time Accuracy

IENN + PSO control method 153 0.36 97.38
Fuzzy switching control method 194 0.58 95.14
0/1 Switching control method 253 1.02 93.87

In Fig. 8, we can see that the proposed IENN-PSO control
method performs better than the fuzzy switching controller. The
switching sequence is presented in Fig. 9. A similar conclusion
also can be drawn from the convergence characteristic of the
errors is shown in Fig. 10. Table III gives the comparison of the
errors in the three methods. The error of the proposed IENN-
PSO control system is smaller than that of the other methods.
Obviously, the IENN-PSO controller gives better performance
than other controllers. For additional comparison, the convergence
speed of the different methods are given in Fig. 10 and classified
in Table IV. The proposed IENN-PSO control method gives better
accuracy, and also has a faster convergence rate than the other
methods.

6. Conclusion

This study has successfully demonstrated the effectiveness of the
proposed IENN-PSO algorithm based on the QARXNN prediction
model. First, the principles of the QARXNN prediction model
were derived. Then, the network structure and theoretical bases
of the proposed IENN-PSO were chosen to adapt the learning
rates in the BP process to replace the traditional trial-and-error
method. Finally, the control performance of the proposed IENN-
PSO based on the QARXNN prediction model was confirmed by
some simulation and experimental results. The main contributions
of this study are as follows: (i) the successful development
of an IENN controller; (ii) the successful adoption of a PSO
algorithm to tune the learning rates in the BP process; and (iii) the
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Fig. 10. Convergence characteristics of the errors for Example 2

successful application of the IENN-PSO based on the QARXNN
prediction model to control a nonlinear system with robust control
performance.
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