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Abstract In this article, a fuzzy adaptive controller

approach is presented for nonlinear systems. The proposed

quasi-ARX neural network based on Lyapunov learning

algorithm is used to update its weight for prediction model

as well as to modify fuzzy adaptive controller. The

improving performances of the Lyapunov learning algo-

rithm are stable in the learning process of the controller and

able to increase the accuracy of the controller as well as

fast convergence of error. The simulations are intended to

show the effectiveness of the proposed method.

Keywords Fuzzy adaptive controller � Lyapunov

learning algorithm � Quasi-ARX neural network

1 Introduction

In the past decades, there has been much interest in the

stabilizing adaptive control of dynamical systems. How-

ever, the stabilization of adaptive control in dynamical

systems is a major challenge because the plants are always

nonlinear. Hence, the performance of linear control models

cannot satisfy the requirements. For this reason, some

nonlinear prediction models have been developed for

nonlinear systems to meet the system consideration. Until

now, neural networks (NNs), wavelet networks (WNs) and

radial basis function networks (RBFNs) [1] have been

directly used to identify and control nonlinear dynamical

systems because of their abilities to approximate arbitrary

mapping to any desired accuracy. However, it still has

some difficulties in parameter identification, controller

design and stability guarantee when using these control

systems. To simplify the identification for controlling, in

our previous work a quasi-ARX neural network (QA-

RXNN) model with a switching mechanism was studied for

nonlinear system adaptive control [2] [3]. It can satisfy the

stability and performance requirements by only using one

model.

Lyapunov learning algorithm is applied as algorithm in

QARXNN with multilayer perceptron (MLP) kernel to

update its weight [4]. Lyapunov based on the controller can

make the closed-loop system globally stable [5]. Lyapunov

method is used to estimate the asymptotic stable region in

controller design by genetic algorithm [6].

In this article, an efficient controller design is proposed

for a nonlinear system modeled under QARXNN using

Lyapunov learning algorithm. First, Lyapunov function is

applied as algorithm in QARXNN with MLP kernel to

update its weight for the prediction model. Then, a fuzzy

switching algorithm is designed between the linear and

nonlinear controllers from the modified QARXNN pre-

diction. This fuzzy switching mechanism is different from

the other fuzzy control because it is only used in control

model and dependent on a switching criterion function.

Last, the control system stability is proved. The proposed

method has only a few number of learning, uniform dis-

tribution and the bounded modeling error characteristic.

This article is organized as follows. Section 2 briefly

describes the problem to be solved. Section 3 discusses the
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controller design in detail. Section 4 provides numerical

simulations to demonstrate the effectiveness of the pro-

posed method, and Sect. 5 presents the conclusions.

2 Statement of the problem

Consider a single-input single-output (SISO) time invariant

whose input–output relationship is described by

yðtÞ ¼ gð/ðtÞÞ þ eðtÞ ð1Þ

/ðtÞ ¼ ½yðt � 1Þ � � � yðt � nyÞuðt � 1Þ � � � uðt � nuÞ�T ð2Þ

where uðtÞ 2 R; yðtÞ 2 R; eðtÞ 2 R are the system output,

the system input and stochastic noise of zero mean at t ¼
1; 2; 3; . . .; respectively. gð�Þ: Rn¼ nu þ ny ! R is an unknown

continuous function (black-box), and /ðtÞ 2 Rn is the

regression vector composed of delays of the input–output

data. The number of input variables n is equal to the sum of

nu and ny. The noise of the system e(t) is added to the

unknown function input output of the system.

Assumption 1 (i) The input and output of training data

are bounded, while gð/ðtÞÞ is the unknown continuous

function. (ii) The system has a global uniformly asymp-

totically stable zero dynamics.

3 Implementation of an efficient controller

3.1 Lyapunov function

The learning algorithm based on Lyapunov function is

described as follows:

Step 1. Setting h ¼ 0; small initial values of W1 and W2,

k = 1.

Step 2. Calculating zl, then the h can be estimated by

SM1 model using least square error (LSE) method.

Step 3. Calculating an error, zn ¼ @ðX�; nðtÞÞ;
eðkÞ ¼ @ðX�; nðtÞÞ � @ðX; nðtÞÞ ð3Þ

where k = the sequence of learning number, eðkÞ ¼
½e1e2 � � � enþ1�; @ðX�; nðtÞÞ ¼ ½@�1@�2 � � � @�nþ1�;@ðX; nðtÞÞ ¼
½@1@2 � � � @nþ1�

Step 4. Choosing Lyapunov function candidate, whose

function is stated as V(k) = f(e(k)), where V(k) = 0 only

if e(k) = 0 and V(k) [ 0 only if e(k)=0.

Step 5. Updating the weights of MLP neural network

from the output layer to the input layer based on

DVðkÞ ¼ VðkÞ � Vðk � 1Þ\0: According to the Lyapu-

nov theory, if V(k) [ 0 and V(k) \ 0, the error output

will converge to zero as time goes to infinity.

lim
k!1

eðkÞ ¼ 0 ð4Þ

Step 6. Stop if pre-specified condition is met, otherwise

go to step 2. Set k = k ? 1.

The weight matrices in the first and second layers can be

calculated based on Lyapunov function candidate expres-

sed as

VðkÞ ¼ bke2ðkÞ ð5Þ

where b is the positive constant value and b[ 1, k is the

k sequence of the learning number.

3.2 Proposed controller

The controller design includes two stages; the first stage is

identification of QARXNN prediction model and the next

stage is the derivation of the control law.

The identified QARXNN prediction model from previ-

ous work [2] is described by

ŷðt þ d j t; nðtÞÞ ¼ WTðtÞĥ
þ vðtÞWTðtÞ:Ŵ2CðŴ1nðtÞ þ B̂Þ

ð6Þ

where bh; Ŵ1; Ŵ2 and B̂ are used for controller design.

Consider a minimum variance control with the criterion

function as follows:

Mðt þ 1Þ ¼ 1

2
yðt þ dÞ � y�ðt þ dÞð Þ2þ k

2
uðtÞ2

� �

ð7Þ

where k is weighting factor for the control input.

Therefore, the controllers can be achieved by solving

oMðt þ 1Þ
oui

¼ 0 i ¼ 1; 2 ð8Þ

By solving (8), two controllers can be derived based on

QARXNN prediction model as follows:

C1 : ulðtÞ ¼
b̂1

0

b̂1
0b̂1

0 þ k
ðb̂1

0 � b̂1ðq�1Þq
� �

uðt � 1Þ

þ y�ðt þ 1Þ � â1ðq�1ÞyðtÞÞ
ð9Þ

C2 : unðtÞ ¼
b̂

0;t

b̂2
0;t þ k

ðb̂0;t � b̂ðq�1Þq
� �

uðt � 1Þ

þ y�ðt þ 1Þ � â q�1; nðtÞ
� �

yðtÞÞ
ð10Þ

where

âðq�1Þ ¼ â0 þ â1q�1 þ � � � þ ân�1q�nþ1;

b̂ðq�1Þ ¼ b̂0 þ b̂1q�1 þ � � � þ b̂mþd�2q�m�dþ2;

âðq�1; nðtÞÞ ¼ â0;t þ â1;tq
�1 þ � � � þ ân�1;tq

�nþ1;

b̂ðq�1; nðtÞÞ ¼ b̂0;t þ b̂1;tq
�1 þ � � � þ b̂mþd�2q�m�dþ2;
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The coefficients can be obtained as follows:

â0 � � � ân�1b̂0 � � � b̂mþd�2

h i

¼ ĥ

^a0;t � � � ân�1;t
^b0;t � � � b̂mþd�2;t

h i

¼ ĥþ Ŵ2CðŴ1nðtÞ þ B̂Þ

Most switching control based on two or more controllers

has been proposed in [1, 3]. An integer switching law was

introduced into control model as the function n (t) in the

prediction model. It means that the linear and nonlinear

controllers are alternately used in the system. Therefore the

switching criterion function can be expressed as:

JiðtÞ ¼
X

t

l¼k

aiðlÞð eiðlÞk k2�4D2Þ
2ð1þ aiðlÞWðl� kÞTPiðl� k � 1ÞWðl� kÞÞ

þ c �
X

t

l¼t�Nþ1

ð1� aiðlÞ eiðlÞk k2Þ; i ¼ 1; 2 ð11Þ

where N is an integer, and c C 0 is a predefined constant.

Now, the expression of switching law v(t) based on the

switching criterion function can be explained as

vðtÞ ¼ 1; J1ðtÞ[ J2ðtÞ;
0; otherwise

�

ð12Þ

To choose the controller in linear and nonlinear part, the

J1(t) and J2(t) is compared. If J1(t) [ J2(t), the nonlinear part is

added to the controller, or else only the linear part is used to

control. However, the jumping control will reduce the

precision and adaptability of the control system. Motivated

by the fuzzy function theory, this paper introduces a fuzzy

membership function v(t) based on the criterion function

J1(t) and J2(t). Now, a fuzzy switching controller [7] is

obtained based on the fuzzy membership functions v(t),

C : uðtÞ ¼ ð1� vðtÞÞulðtÞ þ vðtÞunðtÞ ð13Þ

Firstly, the switching law n(t) is calculated from input

and output signals and model errors; then it will be used in

the model identification. The fuzzy switching law v(t) is

calculated from input and output signals and model errors;

then it will be used in the control model.

3.3 Stability

The stability analysis of the proposed nonlinear controller

system can be described as follows:

Theorem 1 For the system (1) with adaptive fuzzy

switching controller (13), all the input and output signals

in the closed-loop system are bounded. Moreover, the

tracking error of the system can converge on zero when a

properly neural network is determined.

Proof First, similar to [7],

lim
N!1

X
N

t¼1

aðtÞ2ðe1ðtÞ2 � 4DÞ
2ð1þWðt � dÞTWðt � dÞÞ

\1; ð14Þ

and

lim
N!1

aðtÞ2ðe1ðtÞ2 � 4DÞ
2ð1þWðt � dÞTWðt � dÞÞ

! 0 ð15Þ

Along with Assumption 1 (iii) e1(t) is bounded.

By (11) and (14), the second term of J1(t) is always

bounded. J2(t) has two cases: (i) J2(t) is bounded, so the

model error e(t) is bounded and satisfies Eq. (15); (ii)

J2(t) is unbounded.

Since (1) J1(t) is bounded, there is a constant t0 such that

v(t) = 1, Vt [ t0. The model also has bounded error e(t).

From the above inequalities, the input and output of the

closed-loop switching control system are bounded. The

linear part is always bounded.

If a proper nonlinear part is chosen and the accurate

parameters are adjusted, the model error e2(t) can converge

on zero. On the other hand, a constant T0 satisfies v(t) = 0,

Vt [ T0. Then, the tracking error of the model can con-

verge on zero.

4 Numerical simulations

In this proposed design, the system is a nonlinear one

governed by

yðtÞ ¼ g½yðt � 1Þ; yðt � 2Þ; yðt � 3Þ; uðt � 1Þ; uðt � 2Þ�
þ vðtÞ

ð16Þ

where g(.) is the nonlinear function with a disturbance

g½x1; x2; x3; x4; x5� ¼
x1x2x3x5ðx3 � 1Þ þ x4

1þ x2
2 þ x2

3

ð17Þ

The desired output in this example is a piecewise function:

y�ðtÞ ¼

0:6y� ðt � 1Þ þ rðt � 1Þ
t 2 ½1; 100� [ ½151; 200�

0:7 sign ð0:4493y�ðt � 1Þ þ 0:57rðt � 1Þ
t 2 ½101; 150�

8

>

>

<

>

>

:

ð18Þ

where rðtÞ ¼ sinð2pt=25Þ:
In Fig. 1, the black dotted line is the desired output,

while the red solid line denotes the proposed method output

y(t). In Fig. 1a, the magenta dashed line shows the linear

control output y0(t). Obviously, the control output of the

proposed method is nearly consistent with the desired

output along of the time that is better than the linear. In

Fig. 1b, blue dashed line shows the 0/1 switching control

output y1(t). Clearly, the proposed control output is almost

coincident with the desired output. It can also be found that

the 0/1 switching control results have some wobble at the
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last half time. In Fig. 1c, the green dashed line shows the

fuzzy switching control output y2(t). From the figure, it is

shown that the proposed control method can do better than

fuzzy switching controller.

A similar conclusion can also be obtained from the

convergence characteristic of the error shown in Fig. 2a.

The switching sequence is presented in Fig. 2b and fuzzy

switching sequence is shown in Fig. 2c.

Table 1 gives the errors of the three methods; the

proposed control method has a better accuracy and the

error of the proposed method is smaller than the other

methods.

Fig. 1 a Simulation result of

the proposed method compared

with linear control and b
simulation result of the

proposed method compared

with 0/1 switching. c Simulation

result of the proposed method

compared with fuzzy switching

reference [7]

Fig. 2 a Convergence

characteristics of the errors. b
Switching sequence. c Fuzzy

switching sequence
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5 Conclusions

This study has successfully demonstrated the effectiveness

of the proposed fuzzy adaptive controller using Lyapunov

learning algorithm based on QARXNN prediction model.

First, the principles of QARXNN prediction model was

derived. Second, the network structure and theoretical base

of the proposed method have been adopted to adapt the

Lyapunov learning algorithm to replace the traditional

trial-and-error method.

Finally, the control performance of the proposed method

based on QARXNN prediction model has been confirmed

by experimental result. The main contributions of this

study are: (1) the successful development of an improved

fuzzy switching controller; (2) the successful adoption of a

Lyapunov learning algorithm; (3) the successful applica-

tion of the fuzzy switching controller based on QARXNN

prediction model to control nonlinear system with robust

control performance.
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