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Abstract—A nonlinear model-predictive control (NMPC) is
demonstrated for nonlinear systems using an improved fuzzy
switching law. The proposed moving average filter fuzzy
switching law (MAFFSL) is composed of a quasi-ARX radial
basis function neural network (RBFNN) prediction model and
a fuzzy switching law. An adaptive controller is designed based
on a NMPC. a MAFFSL is constructed based on the system
switching criterion function which is better than the (ON/OFF)
switching law and a RBFNN is used to replace the neural
network (NN) in the quasi-ARX black box model which is
understood in terms of parameters and is not an absolute black
box model, in comparison with NN. The proposed controller
performance is verified through numerical simulations to
demonstrate the effectiveness of the proposed method.

Keywords–nonlinear model-predictive control; moving average
filter fuzzy switching law ; quasi-ARX radial basis function
neural network;

I. INTRODUCTION

Adaptive control has a lot of interest in recen-

t years[1][2][3]. Therefore, many nonlinear black box mod-

els have been used to control nonlinear systems. There are

problems of the controller designed and the stability of

whole systems. Zeng et al.[4] established a neural network

(NN) predictive control scheme for studying the coagulation

process of waste water treatment in a paper mill, and

Wang et al. presented adaptive NN model based predictive

control[5].

A quasi-ARX model embodies an ARX-like macro model

part, a kernel part and a controller was designed based

on the predictive model. The kernel part is an ordinary

network model, such as NNs, wavelet networks (WNs),

neuro-fuzzy networks (NFNs) and RBFNNs to parameterize

the nonlinear coefficients of macro model[6]. However, there

are still some aspects needed to be improved in the above

control method. First, on the (ON/OFF) hard switching

control method which is not very smooth; the second is

the assumption of global boundedness also can be relaxed;

the third is the parameters of quasi-ARX NN model to be

adjusted on-line are highly nonlinear, which deteriorates the

adaptability of control system[7].

Motivated by the above aspects, a MAFFSL is constructed

based on the system switching criterion function which is

better than the (ON/OFF) switching law and a RBFNN is

used to replace the NN in the quasi-ARX black box model

which is understood in terms of parameters and is not an

absolute black box model, in comparison with NN. The

simulation includes two parts: the fuzzy switching control,

results based on quasi-ARX NN model and the fuzzy

switching control based on quasi-ARX RBFNN model. The

simulation results show that the proposed control model and

method based on the three improvements have better control

performance[6].

The rest of the paper is organized as a NMPC is de-

veloped to control nonlinear systems based on a quasi-

ARX RBFNN prediction model using MAFFSL. In Section

2, a quasi- ARX RBFNN prediction model is introduced.

Section 3 describes the NMPC design using MAFFSL.

Numerical simulations are carried out to show the effec-

tiveness of the proposed method in Section 4 compari-

son with previous improved Elman neural network-particle

swarm optimization(IENN-PSO), fuzzy switching control,

(ON/OFF) switching control and linear control. Finally,

Section 5 presents the conclusions.
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II. QUASI-ARX RADIAL BASIS FUNCTION NEURAL

NETWORK PREDICTION MODEL

A. ARX-Like Expression

Consider a nonlinear time-invariant dynamical system

with single-input-single-output (SISO) whose input-output

relation described by:[7]

y(t+ d) = g(ϑ(t)) (1)

ϑ(t) = [y(t+d−1), · · · y(t+d−n), u(t), · · · , u(t−m+1)]T

(2)

where y(t) is the output at the time t(t = 1, 2, ...), u(t) is

the input, d is the known integer time delay, ϑ(t) is the

regression vector and n,m are the system orders. g(·) is a

nonlinear function and at a small region around ϑ(t) = 0, it

is C∞ continuous, then g(0) = 0 [6].

Under the continuous condition, the unknown nonlinear

function g(ϑ(t)) can be found by Taylor series expansion

on a small region around ϑ(t) = 0:

y(t+ d) = g′(0)ϑ(t) +
1

2
ϑT (t)g′′(0)ϑ(t) + · · · (3)

where the prime denotes differentiation with respect to ϑ(t).
Then the following notations are introduced:[7]

(g′(0) +
1

2
ϑT (t)g′′(0)+)T = [a1,t · · · an,t b0,t · · · bm−1,t]

T

(4)

where a1,t = ai(ϑ(t))(i = 1, · · · , n) and bj,t =
bj(ϑ(t))(j = 0, · · · ,m− 1) are nonlinear functions of ϑ(t).

Therefore to get y(t + d) by using the input-output data

up to time t in a model. The coefficients ai,t and bj,t need

to be mathematically tractable using the input-output data

up to time t. It could be found by iteratively replace y(t+ l)
in the expressions of ai,t and bj,t with functions:

y(t+ l)⇒ g(ϑ̃(t+ l)), l = 1, · · · , d− 1 (5)

where ϑ̃(t+l) is ϑ(t+l) whose elements y(t+k), l+1 < k ≤
d−1 are replaced by Eq.(5) and define the new expressions

of the coefficients by:

ai,t = ãi,t = ãi(φ(t)), bj,t = b̃j,t = b̃j(φ(t)) (6)

where φ(t) is a vector:

φ(t) = [y(t) · · · y(t−n+1)u(t) · · ·u(t−m−d+2)]T (7)

Two polynomials A(q−1, φ(t)) and B(q−1, φ(t)) based on

the coefficients are introduced,

A(q−1, φ(t)) = 1− a1,tq−1 − · · · − an,tq−n (8)

B(q−1, φ(t)) = b0,t + · · ·+ bm−1,tq
−m+1 (9)

where q−1 is a backward shift operator, e.g. q−1u(t) = u(t−
1). Then the nonlinear system Eq.(1) can be equivalently

represented as the following ARX-like expression:[2]

A(q−1, φ(t))y(t+ d) = B(q−1, φ(t))u(t) (10)

By the Eq.(10), y(t+ d) satisfies the following equation as

in[11]:

y(t+ d) = α(q−1, φ(t))y(t) + β(q−1, φ(t))u(t) (11)

where

α(q−1, φ(t)) = G(q−1, φ(t)) = α0,t + α1,tq
−1

+ · · ·+ αn−1,tq
−n+1 (12)

β(q−1, φ(t)) = F (q−1, φ(t))B(q−1, φ(t))

= β0,t + β1,tq
−1 + · · ·

+ βm+d−2,tq
−m−d+2 (13)

and G(q−1, φ(t)), F (q−1, φ(t)) are unique polynomials sat-

isfying:

F (q−1, φ(t))A(q−1, φ(t)) = 1−G(q−1, φ(t))q−d (14)

B. Quasi-ARX Radial Basis Function Neural Network

As we know, a controller can be derived easily and can

share parameters from the identified prediction model, when

the prediction model is linear in the input variable u(t)[6].

However, the Eq.(16) is a general one which is nonlinear

in the variable u(t), because the θ̃nΨ are based on Ψ(t)
whose elements contain u(t). To solve this problem, an

extra variable x(t) is introduced and an unknown nonlinear

function ρ(ξ(t)) is used to replace the variable u(t) in θ̃nΨ.

The function ρ(ξ(t)) exists, where ξ(t) is:

ξ(t) = [y(t) · · · y(t− n1)x(t+ d) · · ·
x(t− n3 + d)u(t− 1) · · ·u(t− n2)]T (15)

including the extra variable x(t + d) as an element[7]. A

typical choice for n1, n2 and n3 in ξ(t) is n1 = n + d −
1, n2 = m+2d−2 and n3 = 0. We can express the Eq.(16)

by:

Δy(t+ d) = ψT (t)θ +ΨT (t)θnξ (16)

where θnξ = θ̃nΨ.

The elements of θnξ are unknown nonlinear function of

Φ(t), which can be parameterized by NN or RBFNN. In

this paper the RBFNN used has a local property,

θnξ =
M∑
j=1

wjRj(ξ(t),Ωj) (17)

where M is the number of RBFs, wj =
[ω1j , ω2j , · · · , ωNj ]

T the coefficient vector, and

Rj(ξ(t),Ωj) the RBFs defined by:

Rj(ξ(t),Ωj) = e−λj‖ξ(t)−Zj‖2 j = 1, 2, · · · ,M (18)

where Ωj = λj , Zj is the parameters set of the RBFNN;

Zj is the center vector of RBF and λj are the scaling

parameters; ‖ · ‖2 denotes the vector two-norm. Then we
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can express the quasi-ARX RBFNN prediction model for

Eq.(18) in a form of:

Δy(t+ d) = ψT (t)θ +
M∑
j=1

ΨTwjRj(ξ(t),Ωj) (19)

Now, the quasi-ARX RBFNN model is further expressed by

Δy(t+d) = ψT (t)θ+ΨT (t)WΥ(ξ(t)) = ψT (t)θ+Ξ(t)TΘ
(20)

where Θ = [w11 · · ·wn1 · · ·w1M · · ·wnM ]T and Ξ(t) =
Υ(ξ(t))

⊗
Ψ(t).

Remark 1 the quasi-ARX RBFNN prediction model

described by Eq.(21) is an accurate model of the system

in d-difference form Eq.(16).

C. Parameter Estimation

According to the parameter property, the model param-

eters as in Eq.(24) can be divided into three groups: the

linear parameter θ of the linear part ψT (t)θ, the linear

parameter Θ and the nonlinear parameter Ωj of the nonlinear

part ΨT (t)WΥ(ξ(t)). The nonlinear parameters Ωj are

determined off-line. Let us denote the estimation of Ωj by

Ω̂j . In order to determine the centers and widths of the

RBFNN, AP clustering method is employed. The center Zj

is the arithmetic mean value of all training data in each

cluster. The width λj is � times the largest distances between

all training data in each cluster. The parameters θ and

Θ are estimated by using on-line identification algorithms,

respectively[6].

The linear parameter θ of linear part of model is updated

as:

θ̂(t) = θ̂(t− d) + a(t)ψ(t− d)e1(t)
1 + ψ(t− d)Tψ(t− d) (21)

where θ̂(t) is the estimate of θ at time instant t, which also

denotes the parameter of a linear model used to approximate

the system in d-difference form. And

a(t) =

{
1 if |e1(t)| > 2D
0 otherwise

(22)

where e1(t) denotes the error of the linear model, defined

by

e1(t) = Δy(t)− ψ(t− d)T θ̂(t− d) (23)

The linear parameter Θ of nonlinear part of the quasi-ARX

RBFNN model is updated by a least square (LS) algorithm:

Θ̂(t) = Θ̂(t− d) + P (t)Ξ(t− d)e2(t)
1 + Ξ(t− d)TP (t)Ξ(t− d) (24)

where Θ̂(t) is the estimate of Θ at time instant t. Θ̂(0) = Θ◦
is assigned with an appropriate initial value. e2(t) is the error

of quasi-ARX RBFNN model, defined by

e2(t) = Δy(t)−ψ(t−d)T θ̂(t−d)−ΞT (t−d)Θ̂(t−d) (25)

Figure 1. Quasi ARX RBFNN model based NMPC.

and

P (t) =
P (t− d)− PT (t− d)Ξ(t− d)TΞ(t− d)P (t− d)

1 + Ξ(t− d)TP (t)Ξ(t− d)
(26)

no restriction is made on how the parameters Θ̂(t) are

updated except they always lie inside some pre-defined

compact region h̄:

Θ̂(t) ∈ h̄∀t (27)

III. NONLINEAR MODEL-PREDICTIVE CONTROL

DESIGN

The purpose of NMPC is to design a control law and an

updating law for the primary controller parameters, such that

the system output y is to follow an input reference signal

and the closed-loop dynamic performance of system follows

the predictive model. Figure 1 shows the proposed NMPC

scheme. A moving average filter fuzzy switching mechanism

is employed to improve the performance of the quasi-ARX

RBFNN prediction model. The structure of the proposed

NMPC includes the input layer (i layer), the hidden layer

(j layer), the context layer (r layer) and the output layer (o
layer) with two inputs and one output [8]. The basic function

and the signal propagation of each layer are introduced in

the following: Layer 1 (input layer): the node input and the

node output are represented as:

Xi(k) = fi(neti) = neti = ei(k) (28)

where ei(k) and Xi(k) are the input and the output of the

input layer, respectively and k represents the kth iteration.

Layer 2 (hidden layer): the node input and the node output

are represented as:

Xj(k) = S(netj) (29)

netj =
∑
i

wijXi(k) +
∑
r

wrjX
c
r(k) (30)

where Xj(k) and netj are the output and the input of the

hidden layer, wij and wrj are the connective weights of input
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neurons to hidden neurons and context neurons to hidden

neurons, respectively, Xc
r the output of the context layer, and

S(X) is sigmoid function, that is, S(X) = 1/(1 + e−X).
Layer 3 (context layer): the node input and the node

output are represented as:

Xc
r(k) = γXc

r(k − 1) +Xj(k − 1) (31)

where 0 ≤ γ < 1 is the self-connecting feedback gain.

Layer 4 (output layer): the node input and the node output

are represented as:

Yo(k) = f(neto(k)) = neto(k) (32)

neto(k) =
∑
j

wjoXj(k) + woY
c(k) (33)

Y c(k) = ζY c(k − 1) + Yo(k − 1) (34)

where Yo(k) the output of the NMPC and also the control

effort of the proposed controller, Y c(k) the output of the

output feedback neuron, 0 ≤ ζ < 1 is the self-connecting

feedback gain, wjo and wo are the connective weights

of hidden neurons to output neurons and output feedback

neuron to output neuron, respectively.

A. Learning Algorithm

The learning algorithm of the NMPC is referred to as

the BP learning rule method. To describe using supervised

gradient decent method, first the energy function E is

defined as:[8]

E =
1

2
(y − ŷ)2 =

1

2
e (35)

where y and ŷ represents the output of the system and

output of the prediction model, respectively, and e denotes

the tracking error. Then the learning algorithm is defined as

follows: Layer 4: the error term to be propagated is given

by:

δo = − ∂E

∂Yo(k)
= −∂E

∂e

∂e

∂Yo(k)

= −∂E
∂e

∂e

∂ŷ

∂ŷ

∂Yo(k)
(36)

Δwo = −η1 ∂E
∂wo

= −η1 ∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂wo

= η1δoY
c(k) (37)

Δwjo = −η2 ∂E

∂wjo

= −η2 ∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂wjo

= η2δoXj(k) (38)

The connective weights wo and wjo are updated according

to the following equations, correspondingly:

wo(k + 1) = wo(k) + Δwo (39)

wjo(k + 1) = wjo(k) + Δwjo (40)

where the factors η1 and η2 are the learning rate. Layer 3:

using chain rule, the update law of wrj is:

Δwrj = −η3 ∂E

∂wrj

= −η3 ∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂Xj(k)

∂Xj(k)

∂wrj

= η3δowjoXj(k)[1−Xj(k)]X
c
r(k) (41)

wrj(k + 1) = wrj(k) + Δwrj (42)

Layer 2: through using chain rule, the update law of wij is:

Δwij = −η4 ∂E
∂wij

= −η4 ∂E

∂Yo(k)

∂Yo(k)

∂neto(k)

∂neto(k)

∂Xj(k)

∂Xj(k)

∂wij

= η4δowjoXj(k)[1−Xj(k)]Xi(k) (43)

wij(k + 1) = wij(k) + Δwij (44)

where the factors η3 and η4 are the learning rate,

(η1, η2, η3, η4) will be optimized by the PSO algorithm.

B. Moving Average Filter Fuzzy Switching Law

Consider a similar switching criterion function as in[9]:

Ji(t) =
t∑

l=k

ai(l)(‖ei(l)‖2 − 4Δ2)

2(1 + ai(l)Ψ(l − k)TPi(l − k − 1)Ψ(l − k))

+ c
t∑

l=t−N+1

(1− ai(l) ‖ei(l)‖2), i = 1, 2 (45)

where N is an integer, and c ≥ 0 is a predefined constant.

The previous work [2] introduce a fuzzy switching parameter

χ(t) based on the criterion function J1(t) and J2(t):

χ(t) =

⎧⎨
⎩

1 if x(t) > K
x(t) if k ≤ x(t) ≤ K
0 if x(t) < k

(46)

where x(t) = J1(t)(J1(t)+J2(t))
−1, K and k are constants

which satisfy k ∈ (0, 0.5),K ∈ (0.5, 1). In order to make

the switching control smooth, the first improvement that can

be done is adding the moving average filter in the switching

parameter χ(t), with the preset threshold parameters k
and K to improve the accuracy and the adaptation in the

controller by reducing the unreasonable switching in the
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control process. The switching parameter for MAFFSL is

defined as:

χ(t) =

⎧⎪⎨
⎪⎩

1 if x(t) > K
1∑M−1

t=0
ζi

∑M−1
t=0 ζiχ(t− 1) if k ≤ x(t) ≤ K

0 if x(t) < k
(47)

C. Lyapunov Stability Analysis for the Whole Systems

The following theorem states that the proposed NMPC

convergent is based on Lyapunov stability theory.

Theorem Let the weights of proposed NMPC are updated

along with Eqs.(37), (38), (41) and (43). Then the conver-

gence of the proposed NMPC Eq.(34) is guaranteed if the

learning rate ηi satisfy:

ηi =
β[
∑my

o=1 eo(k)
∂ŷo(k)
∂� ]T [

∑my

o=1 eo(k)
∂ŷo(k)
∂� ]

[
∑my

o=1
∂ŷo(k)
∂� ]T [

∑my

o=1 eo(k)
∂ŷo(k)
∂� ]

(48)

where i=1,2,3,4 ; the condition are 0 < β < 2 and

� = [wo
11 · · ·wo

mynh
wi

11 · · ·wi
nhni

wj
1 · · ·wj

nh
]T , proposed

NMPC has ni inputs, nh hidden units and my output

variables.

Proof. Let a Lyapunov function candidate be chosen as

l(k) =
∑my

o=1 e
2
o(k), and let δl(k) = l(k + 1) − l(k) and

δeo(k) ≡ eo(k + 1)− eo(k). Then:

δl(k) = 2

my∑
o=1

eo(k)δeo(k) +

my∑
o=1

(δeo(k))
2 (49)

By the method in [10], δeo(k) can be represented by

δeo(k) = [∂eo(k)/∂�]T δ�, while δ� = −ηi(∂yo(k)/∂�)
and the Eq.(49) becomes:

δl(k) = 2

my∑
o=1

eo(k)

[
∂eo
∂�

]T
δ� +

my∑
o=1

([
∂eo
∂�

]T
δ�

)2

= −2ηi
[

my∑
o=1

eo(k)
∂ŷo(k)

∂�

]T [my∑
o=1

eo(k)
∂ŷo(k)

∂�

]

+ η2i

⎛
⎝[my∑

o=1

∂ŷo(k)

∂�

]T [my∑
o=1

eo(k)
∂ŷo(k)

∂�

]⎞⎠
2

(50)

To ensure this selected learning rate inside the stable region,

the learning rate ηi was set as in Eq.(48) and δl(k) < 0
which shows that the proposed NMPC converged. This

completes the proof of the theorem.

IV. SIMULATION

In order to study the behavior of the proposed control

method, a numerical simulation is described in this section.

The system is a nonlinear one governed by:

y(t) = f [y(t− 1), y(t− 2), y(t− 3), u(t− 1), u(t− 2)] (51)

Figure 2. Quasi ARX RBFNN model based NMPC.

Figure 3. Convergence characteristics of the errors.

where:

f [x1, x2, x3, x4, x5] =
x1x2x3x5(x3 − 1) + x4

1 + x22 + x23
(52)

The desired output in this example is a piecewise function:

y∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.6y∗(t− 1)
+r(t− 1), t ∈ [1, 100] ∪ [151, 200]
0.7sign(0.4493
y∗(t− 1)
+0.57r(t− 1), t ∈ [101, 150]

(53)

where r(t) = sin(2πt/25). In the nonlinear part, the NN has

one hidden layer and 20 hidden nodes and other parameters

are set by m=4, n=3, d=1. Figure 2 shows the performance

when the proposed controller is used. In the Fig. 2, the

proposed control output is almost coincidence with the
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TABLE I
COMPARISON RESULT OF THE ERRORS.

Method Mean of errors Variance of errors
Proposed control method -0.0025 0.0011

IENN-PSO control method -0.0035 0.0013
Fuzzy switching control method -0.0044 0.0032

0/1 switching control method -0.0051 0.0067

TABLE II
CLASSIFICATION RESULT FOR SEVERAL METHODS.

Method Iteration CPU Time Accuracy
Proposed control method 143 0.31 98.08

IENN-PSO control method 153 0.36 97.38
Fuzzy switching control method 194 0.58 95.14

0/1 switching control method 253 1.02 93.87

desired output. It also can be found that the 0/1 switching

control results have some wobble at the last half time.

The similar conclusion were obtained from convergence

characteristic of the errors is shown in Fig. 3. Table I

gives the contrast of three methods errors. The error of the

proposed control system is smaller than the other methods.

Obviously, proposed controller has better performance than

other controller. For additional comparison, convergence

speed of different methods are given in Fig. 3, and classified

in Table II, the proposed control method gets a better

accuracy, and also has a faster convergence rate than other

methods.

V. CONCLUSION

This study has successfully demonstrated the effectiveness

of the NMPC controller based on QARX RBFNN prediction

model using MAFFSL method. It can satisfy the stability,

response and performance requirement with only one model

used. For parameterizing the coefficients of the macro-

model, a RBFNN is used in the kernel part to replace

NN, thus nonlinear parameters of the proposed quasi-ARX

RBFNN prediction model using MAFFSL method can be

determined by a priori knowledge,then the prediction mod-

el only remains linear parameters to be adjusted on-line.

Simulations are given to show the effectiveness of the

proposed method on control stability, accuracy, response and

robustness.
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