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Abstract—This paper present a neural predictive controller 
(NPC) based on improved quasi-ARX neural network 
(IQARXNN) for nonlinear dynamical systems.  The 
IQARXNN is used as a model identifier with switching 
algorithm and switching stability analysis.  The primary 
controller is designed based on a modified Elman neural 
network (MENN) controller using back-propagation (BP) 
learning algorithm with modified particle swarm 
optimization (MPSO) to adjust the learning rates in the BP 
process to improve the learning capability.  The adaptive 
learning rates of the controller are investigated via 
Lyapunov stability theorem, which are respectively used to 
guarantee the convergences of the predictive controller.  
Performance of the proposed MENN controller with MPSO 
is verified by simulation results to show the effectiveness of 
the proposed method both on stability and accuracy. 

Keywords-neural predictive controller (NPC); improved 
quasi-ARX neural network (IQARXNN); modified Elman 
neural network (MENN); modified particle swarm 
optimization (MPSO); stability and accuracy 

I.  INTRODUCTION 
The NPC of nonlinear dynamical systems has attracted 

much attention and developed significantly over the past 
few decades.  Some researchers have successfully applied 
neural network (NN) as the model identifier of the NPC 
system for controlling the real processes; for examples, 
Piche et al. [1] presented NN-based modeling and control 
techniques by developing nonlinear dynamic models from 
empirical input-output data, Zeng et al. [2] established a 
NN predictive control scheme for studying the coagulation 
process of wastewater treatment in a paper mill, and Wang 
et al. [3] presented adaptive NN model based predictive 
control for air-fuel ratio of SI engines.   

The RNN is a dynamical mapping and demonstrates 
good control performance in the presence of unmodelled 
dynamics; each recurrent neuron has an internal feedback 
loop, and then captures the dynamic response of a system 
without external feedback through delays [4][5].  Some 
researchers have extensively investigated RNN-based 
predictive control with its application to nonlinear 
systems; for examples Parlos et al. [6] presented an 
architecture for integrating NN with industrial controllers 
for use in predictive control of complex process systems, 
Huang and Lewis [7] developed and analyzed a RNN 
predictive feedback control structure for a class of 

uncertain continuous-time nonlinear dynamic time-delay 
system in a canonical form.  

The MENN as one kind of RNN were proposed to 
improve the dynamic characteristic and convergence 
speed [8][9].  A MENN approximation-based computed-
torque controller is proposed to deal with unmodelled 
bounded disturbances and unstructured unmodelled 
dynamics of the robot arm [8].  An improved Elman NN 
was developed to realize failure detection in a hydraulic 
servo system [9].   

There are two major criticisms on neural network 
models. The first one is that their parameters do not have 
useful interpretations. The second one is that they do not 
have a friendly interface for controller design and system 
analysis [10][11][12]. To solve these problems, a quasi-
ARX neural network model has been proposed which 
embodied a macro-model part and a kernel part [10][13]. 
The quasi-ARX neural network can be used to identify 
nonlinear systems accurately.  

In this paper, the quasi-ARX neural network is 
divided into two parts: the linear part is used to ensure the 
nonlinear stability, and the nonlinear part is utilized to 
improve the accuracy. In order to combine both the 
stability and universal approximation capability in our 
controller, a switching law is established based on system 
input-output variables and prediction errors. 

The existing work and the previous works of authors  
[19][20][21][22][23] is developing controller of nonlinear 
systems based on quasi-ARX neural network, and current 
work are focus on neural predictive controller.    

In this paper, a MENN controller with MPSO is 
developed to control nonlinear systems based on an 
improved quasi-ARX prediction model.  In Section 2, the 
considered system is given. In Section 3, an improved 
quasi-ARX prediction model is introduced based on a NN 
with a switching law and analyzes the stability.  Section 4 
describes the MENN controller using MPSO for learning 
rates adjustment and investigated by Lyapunov stability 
theorem.  Numerical simulations are carried out to show 
the effectiveness of the proposed model in Section 5.  At 
last Section 6 gives some conclusion. 
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II. PROBLEM FORMULATION 
Consider nonlinear time-invariant system with a 

single-input-single-output (SISO) whose input-output 
dynamic described as 

 y(t)=g(ϕ(t))+v(t). (1) 

ϕ(t)=[y(t-1), …, y(t-n), u(t-d), …, u(t-m-d+1)]T 

where  y(t) as output, u(t) as input at time t (t = 1, 2, …), 
d the recognized integer time delay,  ϕ(t) the regression 
vector, and v(t) the system noise and g(.) is a nonlinear 
function.  
The next assumptions will be used:  
Assumption 1:  
(i) g(.) is a continuous function, and at a small region 

around ϕ(t) = 0, it is C∞ continuous;  
(ii) there is a rational indefinite controller which may be 

expressed by u(t)=�(�(t))  definition  
�(t)=[y(t)…y(t-n)u(t-1)…u(t-m)y*(t+1) … y*(t+1-l)]T   
(y*(t) is reference output); 

III. IMPROVED QUASI-ARX NEURAL NETWORK 

A. Quasi-ARX Neural Network 
Through using Taylor expansion for (1), a similar-

linear ARX model could be developed as 

 A(q−1, φ(t))y(t) = y0+ B(q−1, φ(t)) q-d u(t − 1) + v(t). (2) 

where A(q-1,φ(t)) and B(q-1,φ(t)) is defined by: 

A(q-1,φ(t)) = 1 – a1,t q-1  -  … - an,t q-n 

B(q-1,φ(t)) = b0,t + … + bm-1,t q-m+1 

φ(t) == [y(t)  … y(t-n+1)u(t) … u(t-m-d+2)]T 

Introducing the following marks: 

ψ(t) = [1 y(t)  … y(t-n+1) u(t) … u(t-m-d+2)]T 

Φ( �(t),χ(t)) = [y�,χ α0,t … αny-1,t β0,t … βnu+d-2]T, 

Finally the improved quasi-ARX NN expression by : 

 yp(t+d|t, �(t))= ψT(t) Φ( �(t), χ(t)). (3) 

B. Switching Law 

The switching law define by the following function  
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Then, the expression of switching law χ(t) described as 
χ(t)=1 if J1(t) > J2(t) otherwiseχ(t)=0. If J1(t) > J2(t) the 
nonlinear part is added, else only use linear part to identify. 

 

Figure 1.  NPC structure by neural network. 

IV. DESIGN OF NPC 

A. NPC Scheme 
The purpose of NPC is to design a control law and an 

updating law for the primary controller parameters, such 
that the system output y is following input reference signal 
yr and the closed-loop dynamic performance of system is 
following predictive model.  The interior characteristic of 
NPC guarantees the dynamic performance of the closed-
loop system as long as the controller is properly designed.  

Fig. 1 show the NPC scheme which will be used in the 
proposed nonlinear system.  A switching mechanism is 
employed to improve the performance of the quasi-ARX 
neural network prediction model.  The primary controller 
is modified Elman neural network controller with 
modified particle swarm optimization. 

B. Modified Elman Neural  Network Controler Design 
Modified Elman neural network is better than common 

Elman neural network because the feedback of the output 
layer is taken into account, so better learning efficiency 
can be obtained.  In a common Elman neural network, the 
hidden layer neurons are fed by the outputs of the context 
neurons and the input neurons.   

Context neurons are memory units as they store the 
previous output of hidden neurons.  Because a common 
Elman neural network only employs the hidden context 
nodes to diverse message, it has low learning speed and 
convergence precision.   

Fig. 2 show the structure of the proposed MENN 
including the input layer (i layer), the hidden layer ( j 
layer), the context layer (r layer) and the output layer (o 
layer) with two inputs and one output [14]. 

)(kx c
r

 

Figure 2.  Structure of modified Elman neural network. 
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The basic function and the signal propagation of each 
layer are introduced in the following: 

Layer 1 (input layer): the node input and the node output 
are represented as 

 xi(k) = fi(neti) = neti = ei(k). (5) 

where ei(k) and xi(k) are the input and the output of the 
input layer,  respectively, k represents the kth iteration. 

Layer 2 (hidden layer): the node input and the node output 
are represented as 

 xj(k) = S(netj). (6) 

 ∑∑ ×+×=
r

c
rrj

i
iijj kxWkxWnet )()( . (7) 

where xj(k) and netj are the output and the input of the 
hidden layer, Wij and Wrj the connective weights of input 
neurons to hidden neurons and context neurons to hidden 
neurons, respectively, )(kxc

r  the output of the context 
layer, and S(x) is sigmoid function, that is, S(x)=1/(1+e-x). 

Layer 3 (context layer): the node input and the node 
output are represented as 

 )1()1()( −+−= kxkxkx j
c
r

c
r α . (8) 

where  0 ≤ α < 1  is the self-connecting feedback gain. 

Layer 4 (output layer): the node input and the node output 
are represented as 

 yo(k) = f(neto(k)) = neto(k). (9) 

 )()()( kyWkxWknet c
o

j
jjoo ×+×=∑ . (10) 

 yc(k) = β yc (k-1) + yo(k-1). (11) 

where yo(k) the output of the modified Elman neural 
network and also the control effort of the proposed 
controller, yc(k) the output of the output feedback neuron, 
0 ≤ β < 1 the self-connecting feedback gain, Wjo  and Wo 
are the connective weights of hidden neurons to output 
neurons and output feedback neuron to output neuron, 
respectively.  

C. Learning Algorithm 
The learning algorithm of the modified Elman neural 

network is referred to as the BP learning rule method and 
chain rule.  To describe using supervised gradient decent 
method, first the energy function E is defined as 

 E = ½ (y - yp)2 = ½ εo
2. (12) 

where y and yp represents the  output of the system and 
output of the prediction model, respectively, and εo 
denotes the tracking error.   

Then the learning algorithm is defined as follows: 

Layer 4: the error term to be propagated is given by 

 
)()()( ky

y
y

E
ky

E
ky

E

o

p

p

o

oo

o

oo
o ∂

∂
∂
∂

∂
∂−=

∂
∂

∂
∂−=

∂
∂−= ε

ε
ε

ε
δ . (13) 

 

)(

)(
)(

)(
)(

1

11

ky

W
knet

knet
ky

ky
E

W
EW

c
o

o

o

o

o

oo
o

δη

ηη

=

∂
∂

∂
∂

∂
∂−=

∂
∂−=Δ .        (14) 

 

)(

)(
)(

)(
)(

2

22

kx

W
knet

knet
ky

ky
E

W
EW

jo

jo

o

o

o

ojo
jo

δη

ηη

=

∂
∂

∂
∂

∂
∂−=

∂
∂−=Δ  .     (15) 

The connective weights Wo and Wjo are updated according 
to the following equations, correspondingly 

 Wo(k+1) = Wo(k) + ΔWo. (16) 

 Wjo(k+1) = Wjo(k) + ΔWjo. (17) 

where the factors η1 and η2 are the learning rate. 

Layer 3: through using chain rule, the update law of Wrj is  
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 Wrj(k+1) = Wrj(k) + ΔWrj. (19) 

Layer 2: through using chain rule, the update law of Wij is 
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 Wij(k+1) = Wij(k) + ΔWij. (21) 

where the factors η3 and η4 are the learning rate, (η1, η2, η3, 
η4) will be optimized by the MPSO algorithm. 

Finally, a delta adaptation law as follows is adopted 
because of the Jacobian of the unknown dynamics system 
is difficult to be determined [15] 

 
ooppo yyyy εεδ +=−+−≅ )()( . (22) 

where y and yp represent the first derivatives of the output 
of the system and output of the prediction model.  

D. Learning Rates Adjustment using MPSO 
PSO is an algorithm based on a group of flying birds 

to simulate the behaviour of a swarm as a simplified 
collective system.   

To further improve the learning ability, MPSO 
algorithm is adopted for tuning the learning rates η1, η2, 

η3, and η4 of the MENN [16][17][18]. 
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1) Step 1:  initialization 
With ],,,[ 4321

iiii
d
i RRRRR =  for learning rates (η1, η2, η3, 

η4), the population size is set to P=15, and the dimension 
of particle is set to d=4.  The parameters needed to be 
optimized with minimum and maximum ranges. 

2) Step 2: Define location and velocity 
Initial location )(NRd

i  and velocities )(Nvd
i of all 

particles are randomly generated in the search space.  The 
elements in vector )(NRd

i  are randomly generated by 

 ],[~ maxmin
ddd

i UR ηη . (23) 

where ],[ maxmin
ddU ηη designate the result of uniformly 

distributed random variable ranging over the known 
lower and upper bounded values ηmin and ηmax of the 
learning rate. 

3) Step 3: Update velocity 
Every particle in the swarm is updated using (24).  The 
velocity update law is described as 
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where pseudorandom sequences r1~U(0,1) and r2~U(0,1) 
are used to simulate the stochastic nature of the algorithm.  
For all dimensions d, let d

i
d
i pbestR , be the current 

position and current personal best position. 
4) Step 4: Update position 

The new velocity is then added to the current position of 
the particle to find its next position by 

 PiNvNRNR d
i

d
i

d
i ,...,1)1()()1( =++=+ . (25) 

5) Step 5: Update pbests 
If the current position of a particle is located within the 
analysis space and does not intrude the territory of other 
gbests, the objective function of the particle is evaluated.  
The fitness of each particle is calculated by 

 
)(1.0

1
yyabs

FIT
p −+

= . (26) 

by using (25), a gradually increasing fitness function can 
be obtained. 

6) Step 6: Update gbests 
The gbest is replaced by the best pbest among the 
particles. Each particle d

iR  memorizes its own fitness 
value and chooses the maximum one that is the best so far 
its defined as d

ipbest  and the maximum vector in the 
population ],,,[ 21

d
p

ddd
i pbestpbestpbestpbest = is 

obtained.   
7) Step7: Check convergence 

Steps 3-6 are repeated until the best fitness value for the 
gbest is obviously improved or a set count of the 
generation is reached. Finally the highest fitness value 

d
igbest  is the optimal learning rate (η1, η2, η3, η4) of 

MENN.  The acceleration coefficients c1 and c2 can be 
used to control the move distance of a particle in a single 
iteration, typically set to 2.0 for simplicity.  The inertia 
weight w in (27) is used to control the convergence 
behavior of the MPSO. Small values of w result in a more 
rapid convergence usually on a suboptimal position, 
while large values may cause divergence. In general, the 
inertia weight w is set according to 

 iter
iter

wwww ⋅
−

−=
max

minmax
max

. (27) 

where itermax is the maximum number of iterations, and 
the iter is the current iteration count. The maximum 
values of the inertia weights are wmax=0.5 and wmin =0.3, 
respectively. 

E. Stability Analysis for the NPC based on Lyapunov 
The following  theorem states that the NPC controller 

using MENN with MPSO is also convergent based on 
Lyapunov stability theory.   

Theorem Let the weights of MENN are updated along 
with (14), (15), (18) and (20).  Then the convergence of 
the MENN (11) is guaranteed if the learning rate η 
satisfies is chosen to satisfy 
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where the condition are 0 < β < 2 and 
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Proof.  Let a Lyapunov function candidate be chosen as 
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By the method in [24], δεo(k) can be represented by 
δεo(k)=[δεo(k)/δW]TδW, and (29) becomes  
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To ensure this selected learning rate inside the stable 
region, we set the learning rate η as in (28) and then have 
δl(k) < 0 which shows that the MENN is convergent.  This 
completes the proof of the theorem. 
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Figure 3.  Simulation result of proposed method. 

V. SIMULATION RESULT 
In order to study the behavior of the proposed control 

method, a numerical simulation is described in this 
section.  The nonlinear SISO system to be controlled is 
described by: 
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The desired output in this example is a piecewise 
function: 
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where r(t) = 1.2*sign(2πt/25). 
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Figure 4.  Switching sequence of proposed method. 

TABLE I.  COMPARISON RESULT OF ERROR EACH METHOD 

Method 
Errors 

Mean of errors Variance MSE 

IQARXNN controller 0.0035 0.0053 0.0052 

MENN with MPSO 0.0017 0.0013 0.0013 

  We use the following improved quasi-ARX neural 
network prediction model to identify the system: 

 y1(t+d|t,ε(t)) = ΨT(t)θ +χ(t) ΨT (t) . W2 Г(W1ε(t) + B).(33) 

In the nonlinear part, a neural network with one 
hidden layer and 20 hidden nodes is used and other 
parameters satisfy m=4,  n = 3, d = 1.  Firstly, the 
improved quasi-ARX model can be trained off-line by the 
hierarchical training algorithm as in [19].   

Figure 3 shows the performance when the MENN 
controller with MPSO  is used comparison with adaptive 
controller using switching mechanism based on quasi-
ARX neural network.   

The parameters of switching law function (19) are 
choosen c=1.2 and N = 3.  In Fig. 3, the dotted line is the 
desired output, the solid line denotes MENN with MPSO 
control output, and dashed line shows the IQARXNN 
control output.  Obviously, the control output with the 
proposed method is nearly consistent with the desired 
output at most of the time.   

The mean of IQARXNN control errors is 0.0035 and 
the variance is 0.0053.  The mean of the proposed method 
control errors is 0.0017 and the variance is 0.0013.  
Therefore, our method is better than adaptive control.  
Table I gives the comparison results of the errors.  
Obviously, MENN with MPSO controller has better 
performance than adaptive controller. 

Figure 4 shows the switching sequence which 1 is 
model with nonlinear part and 0 is model without 
nonlinear part.  Even though the model with nonlinear 
part can often control very well, it degrades sometimes 
and the model only with linear part has to work until the 
nonlinear part can recover.  Therefore, the linear part will 
work all the time, but the neural network part will work 
under the switching sequence. 
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Figure 5.  Convergence characteristics of the proposed methods. 
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TABLE II.  CLASSIFICATION RESULT FOR SEVERAL METHODS 

Method Iterative 
Number 

CPU 
Time 
(sec) 

MSE 
(10-3) 

Accuracy 
(%) 

IQARXNN controller 273 1.82 5.2 95.87 
MENN with MPSO 183 0.56 1.3 98.38 

 
For additional comparisons, convergence speed of 

the different methods are given in Fig.5, and classified in 
Table II.  From Table II, MENN with MPSO method gets 
a better accuracy, and also has a faster convergence rate 
than other methods.  Fig. 5 shows the convergent 
characteristics of various algorithms.  A better nonlinear 
system controller effect can be seen for the proposed 
algorithm.  

VI. CONCLUSION 
This study has successfully demonstrated the 

effectiveness of the proposed modified Elman neural 
network controller with modified PSO based on quasi-
ARX prediction model.  First, the principles of quasi-
ARX prediction model was derived.  Then, the network 
structure and theoretical bases of proposed modified 
Elman neural network controller with modified PSO has 
been adopted to adapt the learning rates in the BP process 
to replace the traditional trial-and-error method.  Finally, 
the control performance of the proposed modified Elman 
neural network controller with modified PSO based on 
quasi-ARX prediction model has been confirmed by some 
simulated and experimental result. 

The main contributions of this study are: (1) the 
successful development of a modified Elman neural 
network controller; (2) the successful adoption of a 
modified PSO algorithm to tune the learning rates in BP 
process; (3) the successful application of the modified 
Elman neural network controller with MPSO based on 
improved quasi-ARX prediction model to control 
nonlinear system with robust control performance.  
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